Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Complications of central venous catheters and their prevention

INTRODUCTION

Insertion of a central venous catheter (CVC) in a human was first reported by Werner Forssman, a surgical intern, who described canalizing his own right atrium via the cephalic vein in 1929. A technique that facilitates catheter placement into lumens and body cavities was subsequently introduced by Sven-Ivar Seldinger in 1953 [1]. Insertion of a CVC using the Seldinger technique has revolutionized medicine by allowing the central venous system to be accessed safely and easily [2].

CVCs are now common among critically ill patients. In the United States, over 15 million catheter days/year are recorded in the intensive care unit alone [3]. Multi-lumen CVCs have become ubiquitous in the intensive care unit (ICU). New catheter designs, standardization of insertion techniques and subsequent central line management have reduced complication rates.

Mechanical complications associated with CVC placement and removal, and strategies to these prevent complications, are discussed here. The placement of central venous catheters and infectious and thrombotic complications are discussed separately. (See "Overview of central venous access", section on 'Indications' and "Diagnosis of intravascular catheter-related infections" and "Catheter-related upper extremity venous thrombosis" and "Epidemiology, pathogenesis, and microbiology of intravascular catheter infections".)

COMPLICATIONS

Numerous complications are associated with central venous catheter (CVC) placement. The most common are listed in the table (table 1).

Published rates of cannulation success and complications vary according to the anatomic site and operator experience. As an example, one review described an overall complication rate of 15 percent [4], while an observational cohort study of 385 consecutive CVC attempts over a six month period found that mechanical complications occurred in 33 percent of attempts [5]. Complications included failure to place the catheter (22 percent), arterial puncture (5 percent), catheter malposition (4 percent), pneumothorax (1 percent), subcutaneous hematoma (1 percent), hemothorax (less than 1 percent), and asystolic cardiac arrest (less than 1 percent).

                

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Nov 2014. | This topic last updated: Aug 27, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. SELDINGER SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiol 1953; 39:368.
  2. Higgs ZC, Macafee DA, Braithwaite BD, Maxwell-Armstrong CA. The Seldinger technique: 50 years on. Lancet 2005; 366:1407.
  3. CDC Guidelines for the Prevention of Intravascular Catheter-Related Infections, 2011 http://stacks.cdc.gov/view/cdc/5916/ (Accessed on February 06, 2014).
  4. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med 2003; 348:1123.
  5. Eisen LA, Narasimhan M, Berger JS, et al. Mechanical complications of central venous catheters. J Intensive Care Med 2006; 21:40.
  6. Boyd R, Saxe A, Phillips E. Effect of patient position upon success in placing central venous catheters. Am J Surg 1996; 172:380.
  7. Tripathi M, Dubey PK, Ambesh SP. Direction of the J-tip of the guidewire, in seldinger technique, is a significant factor in misplacement of subclavian vein catheter: a randomized, controlled study. Anesth Analg 2005; 100:21.
  8. Lefrant JY, Muller L, De La Coussaye JE, et al. Risk factors of failure and immediate complication of subclavian vein catheterization in critically ill patients. Intensive Care Med 2002; 28:1036.
  9. Oliver WC Jr, Nuttall GA, Beynen FM, et al. The incidence of artery puncture with central venous cannulation using a modified technique for detection and prevention of arterial cannulation. J Cardiothorac Vasc Anesth 1997; 11:851.
  10. Bowdle A. Vascular complications of central venous catheter placement: evidence-based methods for prevention and treatment. J Cardiothorac Vasc Anesth 2014; 28:358.
  11. Mirski MA, Lele AV, Fitzsimmons L, Toung TJ. Diagnosis and treatment of vascular air embolism. Anesthesiology 2007; 106:164.
  12. Roberts S, Johnson M, Davies S. Near-fatal air embolism: fibrin sheath as the portal of air entry. South Med J 2003; 96:1036.
  13. Laskey AL, Dyer C, Tobias JD. Venous air embolism during home infusion therapy. Pediatrics 2002; 109:E15.
  14. Heckmann JG, Lang CJ, Kindler K, et al. Neurologic manifestations of cerebral air embolism as a complication of central venous catheterization. Crit Care Med 2000; 28:1621.
  15. Flanagan JP, Gradisar IA, Gross RJ, Kelly TR. Air embolus--a lethal complication of subclavian venipuncture. N Engl J Med 1969; 281:488.
  16. Toung TJ, Rossberg MI, Hutchins GM. Volume of air in a lethal venous air embolism. Anesthesiology 2001; 94:360.
  17. Gordy S, Rowell S. Vascular air embolism. Int J Crit Illn Inj Sci 2013; 3:73.
  18. Kander T, Frigyesi A, Kjeldsen-Kragh J, et al. Bleeding complications after central line insertions: relevance of pre-procedure coagulation tests and institutional transfusion policy. Acta Anaesthesiol Scand 2013; 57:573.
  19. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006; 355:2725.
  20. Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 2002; 136:792.
  21. Parienti JJ, du Cheyron D, Timsit JF, et al. Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 2012; 40:1627.
  22. Veenstra DL, Saint S, Saha S, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 1999; 281:261.
  23. Kalfon P, de Vaumas C, Samba D, et al. Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med 2007; 35:1032.
  24. Lai NM, Chaiyakunapruk N, Lai NA, et al. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev 2013; 6:CD007878.
  25. Berenholtz SM, Pronovost PJ, Lipsett PA, et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 2004; 32:2014.
  26. Shapey IM, Foster MA, Whitehouse T, et al. Central venous catheter-related bloodstream infections: improving post-insertion catheter care. J Hosp Infect 2009; 71:117.
  27. Ramakrishna G, Higano ST, McDonald FS, Schultz HJ. A curricular initiative for internal medicine residents to enhance proficiency in internal jugular central venous line placement. Mayo Clin Proc 2005; 80:212.
  28. Britt RC, Novosel TJ, Britt LD, Sullivan M. The impact of central line simulation before the ICU experience. Am J Surg 2009; 197:533.
  29. Wu SY, Ling Q, Cao LH, et al. Real-time two-dimensional ultrasound guidance for central venous cannulation: a meta-analysis. Anesthesiology 2013; 118:361.
  30. Abood GJ, Davis KA, Esposito TJ, et al. Comparison of routine chest radiograph versus clinician judgment to determine adequate central line placement in critically ill patients. J Trauma 2007; 63:50.
  31. Gebhard RE, Szmuk P, Pivalizza EG, et al. The accuracy of electrocardiogram-controlled central line placement. Anesth Analg 2007; 104:65.
  32. Ely EW, Hite RD, Baker AM, et al. Venous air embolism from central venous catheterization: a need for increased physician awareness. Crit Care Med 1999; 27:2113.