UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2015 UpToDate®

Clostridium difficile in adults: Treatment

Authors
Ciarán P Kelly, MD
J Thomas Lamont, MD
Section Editor
Stephen B Calderwood, MD
Deputy Editor
Elinor L Baron, MD, DTMH

INTRODUCTION

Clostridium difficile infection (CDI) is one of the most common hospital-acquired (nosocomial) infections and is an increasingly frequent cause of morbidity and mortality among older adult hospitalized patients [1]. C. difficile colonizes the human intestinal tract after the normal gut flora has been altered by antibiotic therapy and is the causative organism of antibiotic-associated pseudomembranous colitis.

The treatment of CDI, including initial management, management of relapse, and management of severe disease, will be reviewed here [2,3]. The pathophysiology, epidemiology, clinical manifestations, and diagnosis are discussed separately. (See "Clostridium difficile in adults: Epidemiology, microbiology, and pathophysiology" and "Clostridium difficile infection in adults: Clinical manifestations and diagnosis".)

GENERAL MANAGEMENT PRINCIPLES

An important initial step in the treatment of C. difficile infection (CDI) is cessation of the inciting antibiotic as soon as possible. Treatment with concomitant antibiotics (ie, antibiotics other than those given to treat C. difficile infection) is associated both with significant prolongation of diarrhea and with increased risk of recurrent C. difficile infection [4,5]. If ongoing antibiotics are essential for treatment of the primary infection, it may be prudent, if possible, to select antibiotic therapy that is less frequently implicated in antibiotic-associated CDI, such as parenteral aminoglycosides, sulfonamides, macrolides, vancomycin, or tetracycline.

Management must also include implementation of infection control policies. Patients with suspected or proven C. difficile infection should be placed on contact precautions, and healthcare workers should wash hands before and after patient contact. Hand hygiene with soap and water may be more effective than alcohol-based hand sanitizers in removing C. difficile spores, since C. difficile spores are resistant to killing by alcohol. Therefore, use of soap and water is favored over alcohol-based hand sanitization in the setting of a CDI outbreak, although thus far no studies have demonstrated superiority of soap and water in non-outbreak settings [1]. (See "Clostridium difficile infection: Prevention and control".)

In addition, antimotility agents such as loperamide and opiates have traditionally been avoided in CDI, but the evidence that they cause harm is equivocal [6,7]. Supportive care with attention to correction of fluid losses and electrolyte imbalances is also important. Patients may have regular diet as tolerated, unless surgery or other procedure is planned.

                                        

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Mar 2015. | This topic last updated: Mar 31, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2015 UpToDate, Inc.
References
Top
  1. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 2010; 31:431.
  2. Kelly CP, LaMont JT. Clostridium difficile--more difficult than ever. N Engl J Med 2008; 359:1932.
  3. Bagdasarian N, Rao K, Malani PN. Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 2015; 313:398.
  4. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology 2009; 136:1206.
  5. Mullane KM, Miller MA, Weiss K, et al. Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin Infect Dis 2011; 53:440.
  6. Wilcox MH, Howe R. Diarrhoea caused by Clostridium difficile: response time for treatment with metronidazole and vancomycin. J Antimicrob Chemother 1995; 36:673.
  7. Koo HL, Koo DC, Musher DM, DuPont HL. Antimotility agents for the treatment of Clostridium difficile diarrhea and colitis. Clin Infect Dis 2009; 48:598.
  8. Nelson R. Antibiotic treatment for Clostridium difficile-associated diarrhea in adults. Cochrane Database Syst Rev 2007; :CD004610.
  9. Drekonja DM, Butler M, MacDonald R, et al. Comparative effectiveness of Clostridium difficile treatments: a systematic review. Ann Intern Med 2011; 155:839.
  10. Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 2013; 108:478.
  11. Leffler DA, Lamont JT. Treatment of Clostridium difficile-associated disease. Gastroenterology 2009; 136:1899.
  12. Debast SB, Bauer MP, Kuijper EJ, European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 2014; 20 Suppl 2:1.
  13. Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 2007; 45:302.
  14. Wenisch C, Parschalk B, Hasenhündl M, et al. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 1996; 22:813.
  15. Teasley DG, Gerding DN, Olson MM, et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhoea and colitis. Lancet 1983; 2:1043.
  16. Johnson S, Louie TJ, Gerding DN, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 2014; 59:345.
  17. Recommendations for preventing the spread of vancomycin resistance: recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). Am J Infect Control 1995; 23:87.
  18. Hospital Infection Control Practices Advisory Committee (HICPAC). Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol 1995; 16:105.
  19. ASHP therapeutic position statement on the preferential use of metronidazole for the treatment of Clostridium difficile-associated disease. Am J Health Syst Pharm 1998; 55:1407.
  20. Fekety R. Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhea and colitis. American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 1997; 92:739.
  21. Carmeli Y, Eliopoulos GM, Samore MH. Antecedent treatment with different antibiotic agents as a risk factor for vancomycin-resistant Enterococcus. Emerg Infect Dis 2002; 8:802.
  22. Al-Nassir WN, Sethi AK, Li Y, et al. Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob Agents Chemother 2008; 52:2403.
  23. Pepin J, Alary ME, Valiquette L, et al. Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin Infect Dis 2005; 40:1591.
  24. Pépin J, Valiquette L, Alary ME, et al. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 2004; 171:466.
  25. Pépin J, Valiquette L, Gagnon S, et al. Outcomes of Clostridium difficile-associated disease treated with metronidazole or vancomycin before and after the emergence of NAP1/027. Am J Gastroenterol 2007; 102:2781.
  26. Pepin J. Vancomycin for the treatment of Clostridium difficile Infection: for whom is this expensive bullet really magic? Clin Infect Dis 2008; 46:1493.
  27. Borody TJ, Warren EF, Leis SM, et al. Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol 2004; 38:475.
  28. Bolton RP, Culshaw MA. Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 1986; 27:1169.
  29. Kleinfeld DI, Sharpe RJ, Donta ST. Parenteral therapy for antibiotic-associated pseudomembranous colitis. J Infect Dis 1988; 157:389.
  30. Friedenberg F, Fernandez A, Kaul V, et al. Intravenous metronidazole for the treatment of Clostridium difficile colitis. Dis Colon Rectum 2001; 44:1176.
  31. Fekety R, Silva J, Kauffman C, et al. Treatment of antibiotic-associated Clostridium difficile colitis with oral vancomycin: comparison of two dosage regimens. Am J Med 1989; 86:15.
  32. McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol 2002; 97:1769.
  33. Walters BA, Roberts R, Stafford R, Seneviratne E. Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut 1983; 24:206.
  34. Young G, McDonald M. Antibiotic-associated colitis: why do patients relapse? Gastroenterology 1986; 90:1098.
  35. Wilcox MH, Fawley WN, Settle CD, Davidson A. Recurrence of symptoms in Clostridium difficile infection--relapse or reinfection? J Hosp Infect 1998; 38:93.
  36. Barbut F, Richard A, Hamadi K, et al. Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J Clin Microbiol 2000; 38:2386.
  37. Norén T, Akerlund T, Bäck E, et al. Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. J Clin Microbiol 2004; 42:3635.
  38. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med 1994; 330:257.
  39. Tedesco FJ, Gordon D, Fortson WC. Approach to patients with multiple relapses of antibiotic-associated pseudomembranous colitis. Am J Gastroenterol 1985; 80:867.
  40. Bartlett JG, Tedesco FJ, Shull S, et al. Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis. Gastroenterology 1980; 78:431.
  41. McFarland LV, Surawicz CM, Greenberg RN, et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 1994; 271:1913.
  42. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 2001; 357:189.
  43. Pépin J, Routhier S, Gagnon S, Brazeau I. Management and outcomes of a first recurrence of Clostridium difficile-associated disease in Quebec, Canada. Clin Infect Dis 2006; 42:758.
  44. McFarland LV. Alternative treatments for Clostridium difficile disease: what really works? J Med Microbiol 2005; 54:101.
  45. Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 2000; 342:390.
  46. Leung DY, Kelly CP, Boguniewicz M, et al. Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr 1991; 118:633.
  47. Aboudola S, Kotloff KL, Kyne L, et al. Clostridium difficile vaccine and serum immunoglobulin G antibody response to toxin A. Infect Immun 2003; 71:1608.
  48. Kelly CP. Immune response to Clostridium difficile infection. Eur J Gastroenterol Hepatol 1996; 8:1048.
  49. Fekety R, McFarland LV, Surawicz CM, et al. Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin Infect Dis 1997; 24:324.
  50. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 2011; 364:422.
  51. Cornely OA, Miller MA, Louie TJ, et al. Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis 2012; 55 Suppl 2:S154.
  52. Venugopal AA, Johnson S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin Infect Dis 2012; 54:568.
  53. Hecht DW, Galang MA, Sambol SP, et al. In vitro activities of 15 antimicrobial agents against 110 toxigenic clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob Agents Chemother 2007; 51:2716.
  54. Ackermann G, Löffler B, Adler D, Rodloff AC. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother 2004; 48:2280.
  55. Finegold SM, Molitoris D, Vaisanen ML, et al. In vitro activities of OPT-80 and comparator drugs against intestinal bacteria. Antimicrob Agents Chemother 2004; 48:4898.
  56. Credito KL, Appelbaum PC. Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother 2004; 48:4430.
  57. Tannock GW, Munro K, Taylor C, et al. A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 2010; 156:3354.
  58. Cornely OA, Nathwani D, Ivanescu C, et al. Clinical efficacy of fidaxomicin compared with vancomycin and metronidazole in Clostridium difficile infections: a meta-analysis and indirect treatment comparison. J Antimicrob Chemother 2014; 69:2892.
  59. Eyre DW, Babakhani F, Griffiths D, et al. Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J Infect Dis 2014; 209:1446.
  60. Johnson S, Schriever C, Galang M, et al. Interruption of recurrent Clostridium difficile-associated diarrhea episodes by serial therapy with vancomycin and rifaximin. Clin Infect Dis 2007; 44:846.
  61. Garey KW, Ghantoji SS, Shah DN, et al. A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother 2011; 66:2850.
  62. Curry SR, Marsh JW, Shutt KA, et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis 2009; 48:425.
  63. Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 2010; 362:197.
  64. Rubin MS, Bodenstein LE, Kent KC. Severe Clostridium difficile colitis. Dis Colon Rectum 1995; 38:350.
  65. Lamontagne F, Labbé AC, Haeck O, et al. Impact of emergency colectomy on survival of patients with fulminant Clostridium difficile colitis during an epidemic caused by a hypervirulent strain. Ann Surg 2007; 245:267.
  66. Louie T, Gerson M, Grimard D, et al. Results of a phase III trial comparing tolevamer, vancomycin and metronidazole in Clostridium difficile-associated diarrhea (CDAD) [abstract K-425a]. In: Program and abstracts of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago, IL). Washington, DC: American Society for Microbiology, 2007.
  67. Bartlett JG. The case for vancomycin as the preferred drug for treatment of Clostridium difficile infection. Clin Infect Dis 2008; 46:1489.
  68. Gerding DN. Is there a relationship between vancomycin-resistant enterococcal infection and Clostridium difficile infection? Clin Infect Dis 1997; 25 Suppl 2:S206.
  69. Bartlett JG, Perl TM. The new Clostridium difficile--what does it mean? N Engl J Med 2005; 353:2503.
  70. Nielsen ND, Layton BA, McDonald LC, et al. Changing epidemiology of Clostridium difficile-associated disease. Infect Dis Clin Pract 2006; 14:296.
  71. Institut National de Santé du Québec. Prévention et contrôle de la diarrhée nosocomiale associée au Clostridium difficile au Québec [in French], 3rd ed, Institut National de Santé du Québec, Quebec City, Quebec, Canada 2005.
  72. Wenisch JM, Schmid D, Tucek G, et al. A prospective cohort study on hospital mortality due to Clostridium difficile infection. Infection 2012; 40:479.
  73. Herpers BL, Vlaminckx B, Burkhardt O, et al. Intravenous tigecycline as adjunctive or alternative therapy for severe refractory Clostridium difficile infection. Clin Infect Dis 2009; 48:1732.
  74. Apisarnthanarak A, Razavi B, Mundy LM. Adjunctive intracolonic vancomycin for severe Clostridium difficile colitis: case series and review of the literature. Clin Infect Dis 2002; 35:690.
  75. Shetler K, Nieuwenhuis R, Wren SM, Triadafilopoulos G. Decompressive colonoscopy with intracolonic vancomycin administration for the treatment of severe pseudomembranous colitis. Surg Endosc 2001; 15:653.
  76. Nathanson DR, Sheahan M, Chao L, Wallack MK. Intracolonic use of vancomycin for treatment of clostridium difficile colitis in a patient with a diverted colon: report of a case. Dis Colon Rectum 2001; 44:1871.
  77. Halsey J. Current and future treatment modalities for Clostridium difficile-associated disease. Am J Health Syst Pharm 2008; 65:705.
  78. Apisarnthanarak A, Khoury H, Reinus WR, et al. Severe Clostridium difficile colitis: the role of intracolonic vancomycin? Am J Med 2002; 112:328.
  79. Goodpasture HC, Dolan PJ Jr, Jacobs ER, Meredith WT. Pseudomembranous colitis & antibiotics. Kans Med 1986; 87:133, 146.
  80. Silva J Jr. Update on pseudomembranous colitis. West J Med 1989; 151:644.
  81. McMaster-Baxter NL, Musher DM. Clostridium difficile: recent epidemiologic findings and advances in therapy. Pharmacotherapy 2007; 27:1029.
  82. Sailhamer EA, Carson K, Chang Y, et al. Fulminant Clostridium difficile colitis: patterns of care and predictors of mortality. Arch Surg 2009; 144:433.
  83. Miller MA. Clinical management of Clostridium difficile-associated disease. Clin Infect Dis 2007; 45 Suppl 2:S122.
  84. Steele SR, McCormick J, Melton GB, et al. Practice parameters for the management of Clostridium difficile infection. Dis Colon Rectum 2015; 58:10.
  85. Dallal RM, Harbrecht BG, Boujoukas AJ, et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 2002; 235:363.
  86. Koss K, Clark MA, Sanders DS, et al. The outcome of surgery in fulminant Clostridium difficile colitis. Colorectal Dis 2006; 8:149.
  87. Morris JB, Zollinger RM Jr, Stellato TA. Role of surgery in antibiotic-induced pseudomembranous enterocolitis. Am J Surg 1990; 160:535.
  88. Longo WE, Mazuski JE, Virgo KS, et al. Outcome after colectomy for Clostridium difficile colitis. Dis Colon Rectum 2004; 47:1620.
  89. Neal MD, Alverdy JC, Hall DE, et al. Diverting loop ileostomy and colonic lavage: an alternative to total abdominal colectomy for the treatment of severe, complicated Clostridium difficile associated disease. Ann Surg 2011; 254:423.
  90. Gerding DN. Metronidazole for Clostridium difficile-associated disease: is it okay for Mom? Clin Infect Dis 2005; 40:1598.
  91. Johnson S, Homann SR, Bettin KM, et al. Treatment of asymptomatic Clostridium difficile carriers (fecal excretors) with vancomycin or metronidazole. A randomized, placebo-controlled trial. Ann Intern Med 1992; 117:297.
  92. Olsson-Liljequist B, Nord CE. In vitro susceptibility of anaerobic bacteria to nitroimidazoles. Scand J Infect Dis Suppl 1981; 26:42.
  93. Brazier JS, Fawley W, Freeman J, Wilcox MH. Reduced susceptibility of Clostridium difficile to metronidazole. J Antimicrob Chemother 2001; 48:741.
  94. Wong SS, Woo PC, Luk WK, Yuen KY. Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and Etest. Diagn Microbiol Infect Dis 1999; 34:1.
  95. Barbut F, Decré D, Burghoffer B, et al. Antimicrobial susceptibilities and serogroups of clinical strains of Clostridium difficile isolated in France in 1991 and 1997. Antimicrob Agents Chemother 1999; 43:2607.
  96. Baines SD, O'Connor R, Freeman J, et al. Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 2008; 62:1046.
  97. Peláez T, Alcalá L, Alonso R, et al. Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother 2002; 46:1647.
  98. McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005; 353:2433.
  99. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 2005; 353:2442.
  100. Hu MY, Maroo S, Kyne L, et al. A prospective study of risk factors and historical trends in metronidazole failure for Clostridium difficile infection. Clin Gastroenterol Hepatol 2008; 6:1354.
  101. Treatment of Clostridium difficile-associated disease (CDAD). Med Lett Drugs Ther 2006; 48:89.
  102. Lagrotteria D, Holmes S, Smieja M, et al. Prospective, randomized inpatient study of oral metronidazole versus oral metronidazole and rifampin for treatment of primary episode of Clostridium difficile-associated diarrhea. Clin Infect Dis 2006; 43:547.
  103. Musher DM, Logan N, Bressler AM, et al. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis 2009; 48:e41.
  104. de Lalla F, Nicolin R, Rinaldi E, et al. Prospective study of oral teicoplanin versus oral vancomycin for therapy of pseudomembranous colitis and Clostridium difficile-associated diarrhea. Antimicrob Agents Chemother 1992; 36:2192.
  105. Taylor NS, Bartlett JG. Binding of Clostridium difficile cytotoxin and vancomycin by anion-exchange resins. J Infect Dis 1980; 141:92.
  106. Mogg GA, Arabi Y, Youngs D, et al. Therapeutic trials of antibiotic associated colitis. Scand J Infect Dis Suppl 1980; :41.
  107. Kreutzer EW, Milligan FD. Treatment of antibiotic-associated pseudomembranous colitis with cholestyramine resin. Johns Hopkins Med J 1978; 143:67.
  108. Tedesco FJ. Treatment of recurrent antibiotic-associated pseudomembranous colitis. Am J Gastroenterol 1982; 77:220.
  109. Louie TJ, Peppe J, Watt CK, et al. Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis 2006; 43:411.
  110. Salcedo J, Keates S, Pothoulakis C, et al. Intravenous immunoglobulin therapy for severe Clostridium difficile colitis. Gut 1997; 41:366.
  111. Warny M, Denie C, Delmée M, Lefebvre C. Gamma globulin administration in relapsing Clostridium difficile-induced pseudomembranous colitis with a defective antibody response to toxin A. Acta Clin Belg 1995; 50:36.
  112. Juang P, Skledar SJ, Zgheib NK, et al. Clinical outcomes of intravenous immune globulin in severe clostridium difficile-associated diarrhea. Am J Infect Control 2007; 35:131.