UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstracts for References 1-3

of 'Clinical features, diagnosis, and management of von Hippel-Lindau disease'

1
TI
Clinical features and natural history of von Hippel-Lindau disease.
AU
Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT, Ferguson-Smith MA
SO
Q J Med. 1990;77(283):1151.
 
The clinical features, age at onset and survival of 152 patients with von Hippel-Lindau disease were studied. Mean age at onset was 26.3 years and 97 per cent of patients had presented by aged 60 years. Retinal angioma was the first manifestation in 65 patients (43 per cent), followed by cerebellar haemangioblastoma (n = 60, 39 per cent) and renal cell carcinoma (n = 15, 10 per cent). Overall, 89 patients (59 per cent) developed a cerebellar haemangioblastoma, 89 (59 per cent) a retinal angioma, 43 (28 per cent) renal cell carcinoma, 20 (13 per cent) spinal haemangioblastoma and 11 (7 per cent) a phaeochromocytoma. Renal, pancreatic and epididymal cysts were frequent findings but their exact incidence was not accurately assessed. Mean age at diagnosis of renal cell carcinoma (44.0 +/- 10.9 years) was significantly older than that for cerebellar haemangioblastoma (29.0 +/- 10.0 years) and retinal angioma (25.4 +/- 12.7 years). The probability of a patient with von Hippel-Lindan disease developing a cerebellar haemangioblastoma, retinal angioma or renal cell carcinoma by age 60 years was 0.84, 0.7 and 0.69, respectively. A comprehensive screening protocol for affected patients and at-risk relatives is presented, based on detailed analysis of age at onset data for each of the major complications. Median actuarial survival was 49 years, with renal cell carcinoma the leading cause of death.
AD
Cambridge University Department of Pathology, England.
PMID
2
TI
von Hippel-Lindau disease.
AU
Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH
SO
Lancet. 2003;361(9374):2059.
 
von Hippel-Lindau disease is a heritable multisystem cancer syndrome that is associated with a germline mutation of the VHL tumour suppressor gene on the short arm of chromosome 3. This disorder is not rare (about one in 36000 livebirths) and is inherited as a highly penetrant autosomal dominant trait (ie, with a high individual risk of disease). Affected individuals are at risk of developing various benign and malignant tumours of the central nervous system, kidneys, adrenal glands, pancreas, and reproductive adnexal organs. Because of the complexities associated with management of the various types of tumours in this disease, treatment is multidisciplinary. We present an overview of the clinical aspects, management, and treatment options for von Hippel-Lindau disease.
AD
Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1414, USA. lonserr@ninds.nih.gov
PMID
3
TI
von Hippel-Lindau disease.
AU
Maher ER, Kaelin WG Jr
SO
Medicine (Baltimore). 1997;76(6):381.
 
von Hippel-Lindau disease is a hereditary cancer syndrome characterized by the development of vascular tumors of the central nervous system and retina, clear cell renal carcinomas, pheochromocytomas, pancreatic islet cell tumors, endolymphatic sac tumors, and benign cysts affecting a variety of organs. VHL disease is caused by germline mutations of the von Hippel-Lindau tumor suppressor gene located on chromosome 3p25. Tumor development in this setting is due to inactivation or loss of the remaining wild-type allele in a susceptible cell. The highly vascular nature of VHL-associated neoplasms can be understood in light of the recent finding that the VHL gene product (pVHL) inhibits the accumulation of hypoxia-inducible mRNAs, such as the mRNA encoding vascular endothelial growth factor (VEGF), under normoxic conditions. This property of pVHL appears to be linked to its ability to bind to complexes containing elongin B, elongin C, and cullin 2 (Cul2). Elongin C and Cul2, based on their homology with Skp1 and Cdc53, respectively, are suspected of targeting certain proteins for covalent modification with ubiquitin and hence for degradation. One model, which remains to be tested, is that the binding of pVHL to elongins B/C and Cul2 affects the ubiquitination of RNA-binding proteins that regulate the stability of hypoxia-inducible mRNAs.
AD
Division of Medical Genetics, University of Birmingham, Birmingham Women's Hospital, UK.
PMID