Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Related articles

Role of antiarrhythmic drugs for ventricular arrhythmias in patients with a prior myocardial infarction

INTRODUCTION

Patients who have had an acute myocardial infarction (MI) are at increased risk for sudden cardiac death (SCD), most commonly due to ventricular arrhythmias. Ventricular tachycardia (VT) and ventricular fibrillation (VF) are most common in the first hours after an MI, and the incidence then declines in phases during the days, weeks, and months after the event. However, the arrhythmic risk remains elevated for years after an MI [1-4]. This temporal pattern reflects the electrophysiologic manifestations of the evolving interactions between ischemia, infarction, reperfusion, and scar formation.

Although all patients with a prior MI have an elevated risk of malignant arrhythmias, the magnitude of risk varies from patient to patient. Findings such as reduced left ventricular ejection fraction (LVEF), reduced heart rate variability, abnormalities in the signal averaged ECG, and T wave alternans all predict a higher likelihood of SCD. On the other hand, the risk appears to be equivalent in patients with ST elevation and non-ST elevation infarctions [5].

Due to the heightened risk of malignant arrhythmias after an acute MI, antiarrhythmic drugs for the purpose of preventing SCD have been studied in two major settings: in patients with ventricular arrhythmias, and as prophylaxis.

The role of antiarrhythmic drugs for the treatment of ventricular arrhythmias after an acute MI will be reviewed here. The pathogenesis, clinical features, and general therapy of ventricular arrhythmias after MI and of risk stratification for SCD are presented separately. (See "Pathogenesis of ventricular tachycardia and ventricular fibrillation during acute myocardial infarction" and "Clinical features and treatment of ventricular arrhythmias during acute myocardial infarction" and "Incidence of and risk stratification for sudden cardiac death after acute myocardial infarction" and "Role of implantable cardioverter-defibrillators for the primary prevention of sudden cardiac death after myocardial infarction".)

Patients with ventricular arrhythmias — Ventricular arrhythmias that occur more than 48 to 72 hours after an MI usually reflect permanent substrate for malignant arrhythmias and are associated with an increased long-term risk of SCD. The prognostic significance of arrhythmias that occur within the first 48 hours is less clear. A detailed discussion of the implications of the temporal relationship of arrhythmias to MI is presented separately. (See "Clinical features and treatment of ventricular arrhythmias during acute myocardial infarction".)

                     

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jun 2014. | This topic last updated: Jul 3, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002; 105:1897.
  2. Torp-Pedersen C, Køber L. Effect of ACE inhibitor trandolapril on life expectancy of patients with reduced left-ventricular function after acute myocardial infarction. TRACE Study Group. Trandolapril Cardiac Evaluation. Lancet 1999; 354:9.
  3. Solomon SD, Zelenkofske S, McMurray JJ, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med 2005; 352:2581.
  4. Yap YG, Duong T, Bland M, et al. Temporal trends on the risk of arrhythmic vs. non-arrhythmic deaths in high-risk patients after myocardial infarction: a combined analysis from multicentre trials. Eur Heart J 2005; 26:1385.
  5. Berger CJ, Murabito JM, Evans JC, et al. Prognosis after first myocardial infarction. Comparison of Q-wave and non-Q-wave myocardial infarction in the Framingham Heart Study. JAMA 1992; 268:1545.
  6. Maggioni AP, Zuanetti G, Franzosi MG, et al. Prevalence and prognostic significance of ventricular arrhythmias after acute myocardial infarction in the fibrinolytic era. GISSI-2 results. Circulation 1993; 87:312.
  7. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991; 324:781.
  8. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. The Cardiac Arrhythmia Suppression Trial II Investigators. N Engl J Med 1992; 327:227.
  9. Cairns JA, Connolly SJ, Roberts R, Gent M. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet 1997; 349:675.
  10. Stein J, Podrid PJ, Lampert S, et al. Long-term mexiletine for ventricular arrhythmia. Am Heart J 1984; 107:1091.
  11. Mendes L, Podrid PJ, Fuchs T, Franklin S. Role of combination drug therapy with a class IC antiarrhythmic agent and mexiletine for ventricular tachycardia. J Am Coll Cardiol 1991; 17:1396.
  12. Bigger JT Jr, Fleiss JL, Rolnitzky LM. Prevalence, characteristics and significance of ventricular tachycardia detected by 24-hour continuous electrocardiographic recordings in the late hospital phase of acute myocardial infarction. Am J Cardiol 1986; 58:1151.
  13. Mukharji J, Rude RE, Poole WK, et al. Risk factors for sudden death after acute myocardial infarction: two-year follow-up. Am J Cardiol 1984; 54:31.
  14. Buxton AE, Marchlinski FE, Waxman HL, et al. Prognostic factors in nonsustained ventricular tachycardia. Am J Cardiol 1984; 53:1275.
  15. Buxton AE, Lee KL, Fisher JD, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 1999; 341:1882.
  16. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med 1996; 335:1933.
  17. Gorgels AP, Vos MA, Letsch IS, et al. Usefulness of the accelerated idioventricular rhythm as a marker for myocardial necrosis and reperfusion during thrombolytic therapy in acute myocardial infarction. Am J Cardiol 1988; 61:231.
  18. Newby KH, Thompson T, Stebbins A, et al. Sustained ventricular arrhythmias in patients receiving thrombolytic therapy: incidence and outcomes. The GUSTO Investigators. Circulation 1998; 98:2567.
  19. Wolfe CL, Nibley C, Bhandari A, et al. Polymorphous ventricular tachycardia associated with acute myocardial infarction. Circulation 1991; 84:1543.
  20. Natale A, Sra J, Axtell K, et al. Ventricular fibrillation and polymorphic ventricular tachycardia with critical coronary artery stenosis: does bypass surgery suffice? J Cardiovasc Electrophysiol 1994; 5:988.
  21. Halkin A, Roth A, Lurie I, et al. Pause-dependent torsade de pointes following acute myocardial infarction: a variant of the acquired long QT syndrome. J Am Coll Cardiol 2001; 38:1168.
  22. Zimetbaum PJ, Josephson ME. Use of the electrocardiogram in acute myocardial infarction. N Engl J Med 2003; 348:933.
  23. Freemantle N, Cleland J, Young P, et al. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 1999; 318:1730.
  24. Gottlieb SS, McCarter RJ, Vogel RA. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med 1998; 339:489.
  25. Boutitie F, Boissel JP, Connolly SJ, et al. Amiodarone interaction with beta-blockers: analysis of the merged EMIAT (European Myocardial Infarct Amiodarone Trial) and CAMIAT (Canadian Amiodarone Myocardial Infarction Trial) databases. The EMIAT and CAMIAT Investigators. Circulation 1999; 99:2268.
  26. Kennedy HL, Brooks MM, Barker AH, et al. Beta-blocker therapy in the Cardiac Arrhythmia Suppression Trial. CAST Investigators. Am J Cardiol 1994; 74:674.
  27. Julian DG, Camm AJ, Frangin G, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators. Lancet 1997; 349:667.
  28. Janse MJ, Malik M, Camm AJ, et al. Identification of post acute myocardial infarction patients with potential benefit from prophylactic treatment with amiodarone. A substudy of EMIAT (the European Myocardial Infarct Amiodarone Trial). Eur Heart J 1998; 19:85.
  29. Malik M, Camm AJ, Janse MJ, et al. Depressed heart rate variability identifies postinfarction patients who might benefit from prophylactic treatment with amiodarone: a substudy of EMIAT (The European Myocardial Infarct Amiodarone Trial). J Am Coll Cardiol 2000; 35:1263.
  30. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005; 352:225.
  31. Køber L, Bloch Thomsen PE, Møller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet 2000; 356:2052.
  32. Camm AJ, Pratt CM, Schwartz PJ, et al. Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 2004; 109:990.
  33. Singer I, Al-Khalidi H, Niazi I, et al. Azimilide decreases recurrent ventricular tachyarrhythmias in patients with implantable cardioverter defibrillators. J Am Coll Cardiol 2004; 43:39.
  34. Julian DG, Prescott RJ, Jackson FS, Szekely P. Controlled trial of sotalol for one year after myocardial infarction. Lancet 1982; 1:1142.
  35. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet 1996; 348:7.
  36. Pratt CM, Camm AJ, Cooper W, et al. Mortality in the Survival With ORal D-sotalol (SWORD) trial: why did patients die? Am J Cardiol 1998; 81:869.