Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:

Subscribers log in here

Coronary reperfusion for acute myocardial infarction in older adults


The role of coronary reperfusion in patients with an acute myocardial infarction (MI) varies with the type of infarction: ST elevation (Q wave) MI (STEMI); or non-ST elevation (non-Q wave) MI (NSTEMI). This topic will review the benefits and potential risks associated with coronary reperfusion after acute MI in older adults. Almost all of the available data come from subset analyses of major trials (in which approximately 10 to 15 percent of patients are over age 75) and nonrandomized retrospective analyses [1].

ST elevation MI — Early reperfusion with percutaneous coronary intervention (PCI) or fibrinolytic agents improves outcomes in patients with symptoms suggestive of an acute myocardial infarction (MI) who have ST segment elevation, new or presumably new left bundle branch block that obscures ST segment analysis, or a true posterior MI. Primary PCI, usually consisting of angioplasty with stenting, has become a particularly attractive strategy in elderly patients without shock [2]. (See "Primary percutaneous coronary intervention versus fibrinolysis in acute ST elevation myocardial infarction: Clinical trials" and "Fibrinolytic therapy in acute ST elevation myocardial infarction: Initiation of therapy".)

Non-ST elevation MI — Patients with an acute non-ST elevation (non-Q) wave MI (NSTEMI) pose different issues. Fibrinolysis in these patients increases the risk of intracranial hemorrhage and does not appear to improve cardiac outcomes at least in part because the infarct-related artery is not occluded in 60 to 85 percent of cases [3-6].

The role of "primary PCI" performed within two hours in NSTEMI is also uncertain as the major trials that compared this modality to fibrinolysis involved patients who were eligible for fibrinolysis (ie, with an STEMI). (See "Primary percutaneous coronary intervention versus fibrinolysis in acute ST elevation myocardial infarction: Clinical trials".)

Despite this limitation, most patients with an NSTEMI undergo early catheterization and, if appropriate, revascularization within 4 to 48 hours. The 2007 American College of Cardiology/American Heart Association (ACC/AHA) guidelines for the management of a non-ST elevation acute coronary syndrome (ACS) and the 2005 American College of Cardiology/American Heart Association/Society for Cardiovascular Angiography and Interventions (ACC/AHA/SCAI) guidelines on percutaneous coronary intervention (as well as the 2007 focused update) recommended an early invasive strategy to ST segment depression, elevated cardiac enzymes, and a number of other factors in patients with a non-ST elevation ACS [7-9]. (See "Coronary angiography and revascularization for unstable angina or non-ST elevation acute myocardial infarction" and 'Early invasive strategy in NSTEMI' below.)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Nov 2014. | This topic last updated: Jul 22, 2013.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
  1. Mehta RH, Granger CB, Alexander KP, et al. Reperfusion strategies for acute myocardial infarction in the elderly: benefits and risks. J Am Coll Cardiol 2005; 45:471.
  2. Alexander KP, Newby LK, Cannon CP, et al. Acute coronary care in the elderly, part I: Non-ST-segment-elevation acute coronary syndromes: a scientific statement for healthcare professionals from the American Heart Association Council on Clinical Cardiology: in collaboration with the Society of Geriatric Cardiology. Circulation 2007; 115:2549.
  3. Liebson PR, Klein LW. The non-Q wave myocardial infarction revisited: 10 years later. Prog Cardiovasc Dis 1997; 39:399.
  4. Early effects of tissue-type plasminogen activator added to conventional therapy on the culprit coronary lesion in patients presenting with ischemic cardiac pain at rest. Results of the Thrombolysis in Myocardial Ischemia (TIMI IIIA) Trial. Circulation 1993; 87:38.
  5. Kerensky RA, Wade M, Deedwania P, et al. Revisiting the culprit lesion in non-Q-wave myocardial infarction. Results from the VANQWISH trial angiographic core laboratory. J Am Coll Cardiol 2002; 39:1456.
  6. Wong GC, Morrow DA, Murphy S, et al. Elevations in troponin T and I are associated with abnormal tissue level perfusion: a TACTICS-TIMI 18 substudy. Treat Angina with Aggrastat and Determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombolysis in Myocardial Infarction. Circulation 2002; 106:202.
  7. Anderson J, Adams C, Antman E, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 2002 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, American College or Physicians, Society for Academic Emergency Medicine, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2007; 50:e1 (Accessed on September 18, 2007).
  8. (accessed September 18, 2007) (Accessed on September 18, 2007).
  9. Taus L, Gerzová J. Personality of semen donors and their social behaviour. Czech Med 1991; 14:173.
  10. Stone GW, Grines CL, Cox DA, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002; 346:957.
  11. Guagliumi G, Stone GW, Cox DA, et al. Outcome in elderly patients undergoing primary coronary intervention for acute myocardial infarction: results from the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) trial. Circulation 2004; 110:1598.
  12. Berger AK, Radford MJ, Wang Y, Krumholz HM. Thrombolytic therapy in older patients. J Am Coll Cardiol 2000; 36:366.
  13. Berger AK, Schulman KA, Gersh BJ, et al. Primary coronary angioplasty vs thrombolysis for the management of acute myocardial infarction in elderly patients. JAMA 1999; 282:341.
  14. Tiefenbrunn AJ, Chandra NC, French WJ, et al. Clinical experience with primary percutaneous transluminal coronary angioplasty compared with alteplase (recombinant tissue-type plasminogen activator) in patients with acute myocardial infarction: a report from the Second National Registry of Myocardial Infarction (NRMI-2). J Am Coll Cardiol 1998; 31:1240.
  15. Mehta RH, Sadiq I, Goldberg RJ, et al. Effectiveness of primary percutaneous coronary intervention compared with that of thrombolytic therapy in elderly patients with acute myocardial infarction. Am Heart J 2004; 147:253.
  16. Zijlstra F, Patel A, Jones M, et al. Clinical characteristics and outcome of patients with early (<2 h), intermediate (2-4 h) and late (>4 h) presentation treated by primary coronary angioplasty or thrombolytic therapy for acute myocardial infarction. Eur Heart J 2002; 23:550.
  17. de Boer MJ, Ottervanger JP, van 't Hof AW, et al. Reperfusion therapy in elderly patients with acute myocardial infarction: a randomized comparison of primary angioplasty and thrombolytic therapy. J Am Coll Cardiol 2002; 39:1723.
  18. White HD, Barbash GI, Califf RM, et al. Age and outcome with contemporary thrombolytic therapy. Results from the GUSTO-I trial. Global Utilization of Streptokinase and TPA for Occluded coronary arteries trial. Circulation 1996; 94:1826.
  19. Singh M, Mathew V, Garratt KN, et al. Effect of age on the outcome of angioplasty for acute myocardial infarction among patients treated at the Mayo Clinic. Am J Med 2000; 108:187.
  20. Kirtane AJ, Skolnick AH, Pinto DS, et al. Angiographic and Clinical Outcomes Following Rescue Angioplasty for ST-Elevation Myocardial Infarction in the Elderly. Am J Geriatr Cardiol 2005; 2:10.
  21. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001; 358:527.
  22. Steinhubl SR, Berger PB, Mann JT 3rd, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 2002; 288:2411.
  23. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction. (Accessed on August 24, 2006).
  24. Steinhubl SR, Berger PB, Brennan DM, et al. Optimal timing for the initiation of pre-treatment with 300 mg clopidogrel before percutaneous coronary intervention. J Am Coll Cardiol 2006; 47:939.
  25. De Luca G, Suryapranata H, Stone GW, et al. Abciximab as adjunctive therapy to reperfusion in acute ST-segment elevation myocardial infarction: a meta-analysis of randomized trials. JAMA 2005; 293:1759.
  26. Montalescot G, Barragan P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. N Engl J Med 2001; 344:1895.
  27. Nallamothu BK, Bates ER, Herrin J, et al. Times to treatment in transfer patients undergoing primary percutaneous coronary intervention in the United States: National Registry of Myocardial Infarction (NRMI)-3/4 analysis. Circulation 2005; 111:761.
  28. Alexander KP, Newby LK, Armstrong PW, et al. Acute coronary care in the elderly, part II: ST-segment-elevation myocardial infarction: a scientific statement for healthcare professionals from the American Heart Association Council on Clinical Cardiology: in collaboration with the Society of Geriatric Cardiology. Circulation 2007; 115:2570.
  29. Collins, R. Optimizing thrombolytic therapy of acute myocardial infarction: Age is not a contraindication. Circulation 1991; 84:II230.
  30. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Lancet 1994; 343:311.
  31. Maggioni AP, Maseri A, Fresco C, et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI-2). N Engl J Med 1993; 329:1442.
  32. Thiemann DR, Coresh J, Schulman SP, et al. Lack of benefit for intravenous thrombolysis in patients with myocardial infarction who are older than 75 years. Circulation 2000; 101:2239.
  33. Bueno H, Martínez-Sellés M, Pérez-David E, López-Palop R. Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. Eur Heart J 2005; 26:1705.
  34. Keeley EC, de Lemos JA. Free wall rupture in the elderly: deleterious effect of fibrinolytic therapy on the ageing heart. Eur Heart J 2005; 26:1693.
  35. (Accessed on September 18, 2007). (Accessed on September 18, 2007).
  36. Berger AK, Radford MJ, Krumholz HM. Factors associated with delay in reperfusion therapy in elderly patients with acute myocardial infarction: analysis of the cooperative cardiovascular project. Am Heart J 2000; 139:985.
  37. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1993; 328:673.
  38. Assessment of the Safety and Efficacy of a New Thrombolytic (ASSENT-2) Investigators, Van De Werf F, Adgey J, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet 1999; 354:716.
  39. Van de Werf F, Barron HV, Armstrong PW, et al. Incidence and predictors of bleeding events after fibrinolytic therapy with fibrin-specific agents: a comparison of TNK-tPA and rt-PA. Eur Heart J 2001; 22:2253.
  40. Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 2005; 352:1179.
  41. (Accessed on March 24, 2005).
  42. Gurwitz JH, Gore JM, Goldberg RJ, et al. Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction. Participants in the National Registry of Myocardial Infarction 2. Ann Intern Med 1998; 129:597.
  43. Gore JM, Granger CB, Simoons ML, et al. Stroke after thrombolysis. Mortality and functional outcomes in the GUSTO-I trial. Global Use of Strategies to Open Occluded Coronary Arteries. Circulation 1995; 92:2811.
  44. Brass LM, Lichtman JH, Wang Y, et al. Intracranial hemorrhage associated with thrombolytic therapy for elderly patients with acute myocardial infarction: results from the Cooperative Cardiovascular Project. Stroke 2000; 31:1802.
  45. Stangl K, Laule M, Tenckhoff B, et al. Fibrinogen breakdown, long-lasting systemic fibrinolysis, and procoagulant activation during alteplase double-bolus regimen in acute myocardial infarction. Am J Cardiol 1998; 81:841.
  46. Topol EJ, GUSTO V Investigators. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: the GUSTO V randomised trial. Lancet 2001; 357:1905.
  47. Savonitto S, Armstrong PW, Lincoff AM, et al. Risk of intracranial haemorrhage with combined fibrinolytic and glycoprotein IIb/IIIa inhibitor therapy in acute myocardial infarction. Dichotomous response as a function of age in the GUSTO V trial. Eur Heart J 2003; 24:1807.
  48. Gurwitz JH, Gore JM, Goldberg RJ, et al. Recent age-related trends in the use of thrombolytic therapy in patients who have had acute myocardial infarction. National Registry of Myocardial Infarction. Ann Intern Med 1996; 124:283.
  49. Weaver WD, Litwin PE, Martin JS, et al. Effect of age on use of thrombolytic therapy and mortality in acute myocardial infarction. The MITI Project Group. J Am Coll Cardiol 1991; 18:657.
  50. Krumholz HM, Murillo JE, Chen J, et al. Thrombolytic therapy for eligible elderly patients with acute myocardial infarction. JAMA 1997; 277:1683.
  51. Nadelmann J, Frishman WH, Ooi WL, et al. Prevalence, incidence and prognosis of recognized and unrecognized myocardial infarction in persons aged 75 years or older: The Bronx Aging Study. Am J Cardiol 1990; 66:533.
  52. Krumholz HM, Friesinger GC, Cook EF, et al. Relationship of age with eligibility for thrombolytic therapy and mortality among patients with suspected acute myocardial infarction. J Am Geriatr Soc 1994; 42:127.
  53. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000; 284:835.
  54. Bach RG, Cannon CP, Weintraub WS, et al. The effect of routine, early invasive management on outcome for elderly patients with non-ST-segment elevation acute coronary syndromes. Ann Intern Med 2004; 141:186.
  55. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. FRagmin and Fast Revascularisation during InStability in Coronary artery disease Investigators. Lancet 1999; 354:708.
  56. Boersma E, Harrington RA, Moliterno DJ, et al. Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet 2002; 359:189.
  57. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 1999; 341:625.
  58. Dzavik V, Sleeper LA, Cocke TP, et al. Early revascularization is associated with improved survival in elderly patients with acute myocardial infarction complicated by cardiogenic shock: a report from the SHOCK Trial Registry. Eur Heart J 2003; 24:828.
  59. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003; 349:1315.
  60. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004; 350:221.