Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®


AJ Gelderblom, MD, PhD
Judith VMG Bovée, MD, PhD
Section Editor
Robert Maki, MD, PhD
Deputy Editor
Diane MF Savarese, MD


Chondrosarcomas are a heterogeneous group of malignant bone tumors that share in common the production of chondroid (cartilaginous) matrix [1]. Chondrosarcomas are the third most common primary malignancy of bone after myeloma and osteosarcoma [2]. They account for 20 to 27 percent of primary malignant osseous neoplasms [3].

Clinical behavior is variable. Ninety percent are conventional chondrosarcomas, 90 percent of which are low- to intermediate-grade tumors [4]. These tumors are slow growing with a low metastatic potential. They are considered relatively refractory to chemotherapy and radiation therapy.

In contrast, high-grade chondrosarcomas, which include 5 to 10 percent of conventional chondrosarcomas as well as some rare variants, have a high metastatic potential and a poor prognosis following resection alone [4]. Some of the rare subtypes are more responsive to chemotherapy and radiation.

This topic review will provide an overview of the classification, clinical characteristics, and therapeutic options for chondrosarcoma. The rare chondrosarcomas involving the head and neck and skull base, as well as diagnosis and biopsy techniques for bone sarcomas in general, are discussed separately. (See "Chordoma and chondrosarcoma of the skull base" and "Head and neck sarcomas" and "Bone tumors: Diagnosis and biopsy techniques".)


Histologic grade is one of the most important indicators of clinical behavior and prognosis [5-8]. Chondrosarcomas are graded on a scale from 1 to 3, based upon nuclear size, staining pattern (hyperchromasia), mitotic activity, and degree of cellularity (picture 1).


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Apr 2016. | This topic last updated: Dec 15, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Hogendoorn PCW, Bovee JM, Nielsen GP. Chondrosarcoma (grades I-III), including primary and secondary variants and periosteal chondrosarcoma. In: World Health Organization classification of tumours of soft tissue and bone, 4th ed, Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Eds), IARC, Lyon 2013. Vol 5, p.264.
  2. Dorfman HD, Czerniak B. Bone cancers. Cancer 1995; 75:203.
  3. Murphey MD, Walker EA, Wilson AJ, et al. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 2003; 23:1245.
  4. Angelini A, Guerra G, Mavrogenis AF, et al. Clinical outcome of central conventional chondrosarcoma. J Surg Oncol 2012; 106:929.
  5. Evans HL, Ayala AG, Romsdahl MM. Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer 1977; 40:818.
  6. Pring ME, Weber KL, Unni KK, Sim FH. Chondrosarcoma of the pelvis. A review of sixty-four cases. J Bone Joint Surg Am 2001; 83-A:1630.
  7. Giuffrida AY, Burgueno JE, Koniaris LG, et al. Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Joint Surg Am 2009; 91:1063.
  8. Fiorenza F, Abudu A, Grimer RJ, et al. Risk factors for survival and local control in chondrosarcoma of bone. J Bone Joint Surg Br 2002; 84:93.
  9. Björnsson J, McLeod RA, Unni KK, et al. Primary chondrosarcoma of long bones and limb girdles. Cancer 1998; 83:2105.
  10. Cartilage tumours. In: World health organization classification of tumours. Pathology and genetics. Tumours of soft tissue and bone, Fletcher CD, Unni KK, Mertens F (Eds), 2002. p.233.
  11. Grimer RJ, Gosheger G, Taminiau A, et al. Dedifferentiated chondrosarcoma: prognostic factors and outcome from a European group. Eur J Cancer 2007; 43:2060.
  12. Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am 2007; 89:2113.
  13. Eefting D, Schrage YM, Geirnaerdt MJ, et al. Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol 2009; 33:50.
  14. Bovée JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 2005; 6:599.
  15. Bovée JV. Multiple osteochondromas. Orphanet J Rare Dis 2008; 3:3.
  16. Schmale GA, Conrad EU 3rd, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 1994; 76:986.
  17. Wicklund CL, Pauli RM, Johnston D, Hecht JT. Natural history study of hereditary multiple exostoses. Am J Med Genet 1995; 55:43.
  18. Peterson HA. Multiple hereditary osteochondromata. Clin Orthop Relat Res 1989; :222.
  19. Altay M, Bayrakci K, Yildiz Y, et al. Secondary chondrosarcoma in cartilage bone tumors: report of 32 patients. J Orthop Sci 2007; 12:415.
  20. Pedrini E, Jennes I, Tremosini M, et al. Genotype-phenotype correlation study in 529 patients with multiple hereditary exostoses: identification of "protective" and "risk" factors. J Bone Joint Surg Am 2011; 93:2294.
  21. Ahmed AR, Tan TS, Unni KK, et al. Secondary chondrosarcoma in osteochondroma: report of 107 patients. Clin Orthop Relat Res 2003; :193.
  22. Pierz KA, Womer RB, Dormans JP. Pediatric bone tumors: osteosarcoma ewing's sarcoma, and chondrosarcoma associated with multiple hereditary osteochondromatosis. J Pediatr Orthop 2001; 21:412.
  23. Silve C, Jüppner H. Ollier disease. Orphanet J Rare Dis 2006; 1:37.
  24. Pansuriya TC, van Eijk R, d'Adamo P, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 2011; 43:1256.
  25. Amary MF, Damato S, Halai D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011; 43:1262.
  26. Liu J, Hudkins PG, Swee RG, Unni KK. Bone sarcomas associated with Ollier's disease. Cancer 1987; 59:1376.
  27. Schwartz HS, Zimmerman NB, Simon MA, et al. The malignant potential of enchondromatosis. J Bone Joint Surg Am 1987; 69:269.
  28. Albregts AE, Rapini RP. Malignancy in Maffucci's syndrome. Dermatol Clin 1995; 13:73.
  29. Verdegaal SH, Bovée JV, Pansuriya TC, et al. Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist 2011; 16:1771.
  30. Pannier S, Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 2008; 22:45.
  31. Brien EW, Mirra JM, Kerr R. Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. I. The intramedullary cartilage tumors. Skeletal Radiol 1997; 26:325.
  32. Young CL, Sim FH, Unni KK, McLeod RA. Chondrosarcoma of bone in children. Cancer 1990; 66:1641.
  33. Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res 2007; 459:40.
  34. de Andrea CE, Kroon HM, Wolterbeek R, et al. Interobserver reliability in the histopathological diagnosis of cartilaginous tumors in patients with multiple osteochondromas. Mod Pathol 2012; 25:1275.
  35. Goedhart LM, Ploegmakers JJ, Kroon HM, et al. The presentation, treatment and outcome of periosteal chondrosarcoma in the Netherlands. Bone Joint J 2014; 96-B:823.
  36. Cleven AH, Zwartkruis E, Hogendoorn PC, et al. Periosteal chondrosarcoma: a histopathological and molecular analysis of a rare chondrosarcoma subtype. Histopathology 2015; 67:483.
  37. Vanel D, Picci P, De Paolis M, Mercuri M. Radiological study of 12 high-grade surface osteosarcomas. Skeletal Radiol 2001; 30:667.
  38. Schajowicz F, Sissons HA, Sobin LH. The World Health Organization's histologic classification of bone tumors. A commentary on the second edition. Cancer 1995; 75:1208.
  39. Schajowicz F. Juxtacortical chondrosarcoma. J Bone Joint Surg Br 1977; 59-B:473.
  40. Papagelopoulos PJ, Galanis EC, Mavrogenis AF, et al. Survivorship analysis in patients with periosteal chondrosarcoma. Clin Orthop Relat Res 2006; 448:199.
  41. Geirnaerdt MJ, Hermans J, Bloem JL, et al. Usefulness of radiography in differentiating enchondroma from central grade 1 chondrosarcoma. AJR Am J Roentgenol 1997; 169:1097.
  42. Mirra JM, Gold R, Downs J, Eckardt JJ. A new histologic approach to the differentiation of enchondroma and chondrosarcoma of the bones. A clinicopathologic analysis of 51 cases. Clin Orthop Relat Res 1985; :214.
  43. Bovée JV, Cleton-Jansen AM, Kuipers-Dijkshoorn NJ, et al. Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosomes Cancer 1999; 26:237.
  44. Inwards C, Hogendoorn PCW. Dedifferentiated chondrosarcoma. In: WHO classification of tumours of soft tissue and bone, 4th, Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Eds), IARC, Lyon 2013. p.269.
  45. Bovée JV, Cleton-Jansen AM, Rosenberg C, et al. Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis. J Pathol 1999; 189:454.
  46. Röpke M, Boltze C, Neumann HW, et al. Genetic and epigenetic alterations in tumor progression in a dedifferentiated chondrosarcoma. Pathol Res Pract 2003; 199:437.
  47. Grote HJ, Schneider-Stock R, Neumann W, Roessner A. Mutation of p53 with loss of heterozygosity in the osteosarcomatous component of a dedifferentiated chondrosarcoma. Virchows Arch 2000; 436:494.
  48. Coughlan B, Feliz A, Ishida T, et al. p53 expression and DNA ploidy of cartilage lesions. Hum Pathol 1995; 26:620.
  49. Meijer D, de Jong D, Pansuriya TC, et al. Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosomes Cancer 2012; 51:899.
  50. Pathology and Genetics of tumours of soft tissue and bone, Fletcher CDM, Unni KK, Mertens F (Eds), IARC, Lyon, France 2002.
  51. Staals EL, Bacchini P, Bertoni F. Dedifferentiated central chondrosarcoma. Cancer 2006; 106:2682.
  52. Dickey ID, Rose PS, Fuchs B, et al. Dedifferentiated chondrosarcoma: the role of chemotherapy with updated outcomes. J Bone Joint Surg Am 2004; 86-A:2412.
  53. Nakashima Y, de Pinieux G, Ladanyi M. Mesenchymal chondrosarcoma. In: WHO classification of tumours of soft tissue and bone, 4th, Fletcher CDM, Bridge JA, Hogendoorn CDW, Mertens F. (Eds), IARC, Lyon 2013. p.271.
  54. Frezza AM, Cesari M, Baumhoer D, et al. Mesenchymal chondrosarcoma: prognostic factors and outcome in 113 patients. A European Musculoskeletal Oncology Society study. Eur J Cancer 2015; 51:374.
  55. Dantonello TM, Int-Veen C, Leuschner I, et al. Mesenchymal chondrosarcoma of soft tissues and bone in children, adolescents, and young adults: experiences of the CWS and COSS study groups. Cancer 2008; 112:2424.
  56. Rushing EJ, Armonda RA, Ansari Q, Mena H. Mesenchymal chondrosarcoma: a clinicopathologic and flow cytometric study of 13 cases presenting in the central nervous system. Cancer 1996; 77:1884.
  57. Vencio EF, Reeve CM, Unni KK, Nascimento AG. Mesenchymal chondrosarcoma of the jaw bones: clinicopathologic study of 19 cases. Cancer 1998; 82:2350.
  58. Cesari M, Bertoni F, Bacchini P, et al. Mesenchymal chondrosarcoma. An analysis of patients treated at a single institution. Tumori 2007; 93:423.
  59. Nakashima Y, Unni KK, Shives TC, et al. Mesenchymal chondrosarcoma of bone and soft tissue. A review of 111 cases. Cancer 1986; 57:2444.
  60. Huvos AG, Rosen G, Dabska M, Marcove RC. Mesenchymal chondrosarcoma. A clinicopathologic analysis of 35 patients with emphasis on treatment. Cancer 1983; 51:1230.
  61. Xu J, Li D, Xie L, et al. Mesenchymal chondrosarcoma of bone and soft tissue: a systematic review of 107 patients in the past 20 years. PLoS One 2015; 10:e0122216.
  62. McCarthy EF, Hogendoorn PCW. Clear cell chondrosarcoma. In: World Health Organization classification of tumours of soft tissue and bone, 4th, Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. (Eds), IARC, Lyon 2013. p.273.
  63. Donati D, Yin JQ, Colangeli M, et al. Clear cell chondrosarcoma of bone: long time follow-up of 18 cases. Arch Orthop Trauma Surg 2008; 128:137.
  64. Itälä A, Leerapun T, Inwards C, et al. An institutional review of clear cell chondrosarcoma. Clin Orthop Relat Res 2005; 440:209.
  65. Kawaguchi S, Wada T, Nagoya S, et al. Extraskeletal myxoid chondrosarcoma: a Multi-Institutional Study of 42 Cases in Japan. Cancer 2003; 97:1285.
  66. Drilon AD, Popat S, Bhuchar G, et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. Cancer 2008; 113:3364.
  67. Goh YW, Spagnolo DV, Platten M, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural and immuno-ultrastructural study indicating neuroendocrine differentiation. Histopathology 2001; 39:514.
  68. Antonescu CR, Argani P, Erlandson RA, et al. Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer 1998; 83:1504.
  69. Aigner T, Oliveira AM, Nascimento AG. Extraskeletal myxoid chondrosarcomas do not show a chondrocytic phenotype. Mod Pathol 2004; 17:214.
  70. Brody RI, Ueda T, Hamelin A, et al. Molecular analysis of the fusion of EWS to an orphan nuclear receptor gene in extraskeletal myxoid chondrosarcoma. Am J Pathol 1997; 150:1049.
  71. Kilpatrick SE, Inwards CY, Fletcher CD, et al. Myxoid chondrosarcoma (chordoid sarcoma) of bone: a report of two cases and review of the literature. Cancer 1997; 79:1903.
  72. Demicco EG, Wang WL, Madewell JE, et al. Osseous myxochondroid sarcoma: a detailed study of 5 cases of extraskeletal myxoid chondrosarcoma of the bone. Am J Surg Pathol 2013; 37:752.
  73. Bovée JV, Hogendoorn PC, Wunder JS, Alman BA. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 2010; 10:481.
  74. Ahn J, Lüdecke HJ, Lindow S, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 1995; 11:137.
  75. Stickens D, Clines G, Burbee D, et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 1996; 14:25.
  76. Wuyts W, Van Hul W, Wauters J, et al. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet 1996; 5:1547.
  77. Bovée JV, Cleton-Jansen AM, Wuyts W, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Hum Genet 1999; 65:689.
  78. Hameetman L, Szuhai K, Yavas A, et al. The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. J Natl Cancer Inst 2007; 99:396.
  79. Hameetman L, David G, Yavas A, et al. Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol 2007; 211:399.
  80. McCormick C, Leduc Y, Martindale D, et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 1998; 19:158.
  81. de Andrea CE, Reijnders CM, Kroon HM, et al. Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT. Oncogene 2012; 31:1095.
  82. de Andrea CE, Zhu JF, Jin H, et al. Cell cycle deregulation and mosaic loss of Ext1 drive peripheral chondrosarcomagenesis in the mouse and reveal an intrinsic cilia deficiency. J Pathol 2015; 236:210.
  83. van der Eerden BC, Karperien M, Gevers EF, et al. Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. J Bone Miner Res 2000; 15:1045.
  84. Bovée JV, van den Broek LJ, Cleton-Jansen AM, Hogendoorn PC. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 2000; 80:1925.
  85. Hameetman L, Kok P, Eilers PH, et al. The use of Bcl-2 and PTHLH immunohistochemistry in the diagnosis of peripheral chondrosarcoma in a clinicopathological setting. Virchows Arch 2005; 446:430.
  86. Hopyan S, Gokgoz N, Poon R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet 2002; 30:306.
  87. Tiet TD, Hopyan S, Nadesan P, et al. Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 2006; 168:321.
  88. Rozeman LB, Hameetman L, Cleton-Jansen AM, et al. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol 2005; 205:476.
  89. Amling M, Pösl M, Hentz MW, et al. PTHrP and Bcl-2: essential regulatory molecules in chondrocyte differentiation and chondrogenic tumors. Verh Dtsch Ges Pathol 1998; 82:160.
  90. Kunisada T, Moseley JM, Slavin JL, et al. Co-expression of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP receptor in cartilaginous tumours: a marker for malignancy? Pathology 2002; 34:133.
  91. Pateder DB, Gish MW, O'Keefe RJ, et al. Parathyroid hormone-related Peptide expression in cartilaginous tumors. Clin Orthop Relat Res 2002; :198.
  92. Schrage YM, Hameetman L, Szuhai K, et al. Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. Am J Pathol 2009; 174:979.
  93. Tang GQ, Yan TQ, Guo W, et al. (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 2010; 136:1179.
  94. Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 2011; 224:334.
  95. Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19:17.
  96. Suijker J, Baelde HJ, Roelofs H, et al. The oncometabolite D-2-hydroxyglutarate induced by mutant IDH1 or -2 blocks osteoblast differentiation in vitro and in vivo. Oncotarget 2015; 6:14832.
  97. Jin Y, Elalaf H, Watanabe M, et al. Mutant IDH1 Dysregulates the Differentiation of Mesenchymal Stem Cells in Association with Gene-Specific Histone Modifications to Cartilage- and Bone-Related Genes. PLoS One 2015; 10:e0131998.
  98. Hirata M, Sasaki M, Cairns RA, et al. Mutant IDH is sufficient to initiate enchondromatosis in mice. Proc Natl Acad Sci U S A 2015; 112:2829.
  99. Pansuriya TC, Kroon HM, Bovée JV. Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol 2010; 3:557.
  100. Couvineau A, Wouters V, Bertrand G, et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet 2008; 17:2766.
  101. Bovee JVMG, Alman BA. Enchondromatosis: Ollier disease and MAffucci syndrome. In: World health organization classification of tumours of soft tissue and bone, 4th, Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Eds), IARC Press, Lyon 20013. p.376.
  102. Tarpey PS, Behjati S, Cooke SL, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet 2013; 45:923.
  103. Tallini G, Dorfman H, Brys P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002; 196:194.
  104. Sandberg AA. Genetics of chondrosarcoma and related tumors. Curr Opin Oncol 2004; 16:342.
  105. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms. Cancer Genet Cytogenet 2003; 143:1.
  106. Larramendy ML, Tarkkanen M, Valle J, et al. Gains, losses, and amplifications of DNA sequences evaluated by comparative genomic hybridization in chondrosarcomas. Am J Pathol 1997; 150:685.
  107. van Beerendonk HM, Rozeman LB, Taminiau AH, et al. Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J Pathol 2004; 202:359.
  108. Asp J, Sangiorgi L, Inerot SE, et al. Changes of the p16 gene but not the p53 gene in human chondrosarcoma tissues. Int J Cancer 2000; 85:782.
  109. Rozeman LB, Hogendoorn PC, Bovée JV. Diagnosis and prognosis of chondrosarcoma of bone. Expert Rev Mol Diagn 2002; 2:461.
  110. Lagonigro MS, Tamborini E, Negri T, et al. PDGFRalpha, PDGFRbeta and KIT expression/activation in conventional chondrosarcoma. J Pathol 2006; 208:615.
  111. Sulzbacher I, Birner P, Trieb K, et al. Platelet-derived growth factor-alpha receptor expression supports the growth of conventional chondrosarcoma and is associated with adverse outcome. Am J Surg Pathol 2001; 25:1520.
  112. Wang L, Motoi T, Khanin R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012; 51:127.
  113. Nyquist KB, Panagopoulos I, Thorsen J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012; 7:e49705.
  114. Littrell LA, Wenger DE, Wold LE, et al. Radiographic, CT, and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. Radiographics 2004; 24:1397.
  115. Sanerkin NG. The diagnosis and grading of chondrosarcoma of bone: a combined cytologic and histologic approach. Cancer 1980; 45:582.
  116. Schiller AL. Diagnosis of borderline cartilage lesions of bone. Semin Diagn Pathol 1985; 2:42.
  117. Flemming DJ, Murphey MD. Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol 2000; 4:59.
  118. Geirnaerdt MJ, Bloem JL, Eulderink F, et al. Cartilaginous tumors: correlation of gadolinium-enhanced MR imaging and histopathologic findings. Radiology 1993; 186:813.
  119. Geirnaerdt MJ, Hogendoorn PC, Bloem JL, et al. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 2000; 214:539.
  120. Hudson TM, Manaster BJ, Springfield DS, et al. Radiology of medullary chondrosarcoma: preoperative treatment planning. Skeletal Radiol 1983; 10:69.
  121. Dietlein M, Féaux de Lacroix W, Neufang KF, et al. [Assessment of the grading of cartilaginous tumors of the long tubular bones from the radiologic and pathologic viewpoint]. Rontgenblatter 1990; 43:174.
  122. Shapeero LG, Vanel D, Couanet D, et al. Extraskeletal mesenchymal chondrosarcoma. Radiology 1993; 186:819.
  123. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging 2004; 31:189.
  124. Feldman F, Vanheertum R, Saxena C. 18Fluoro-deoxyglucose positron emission tomography evaluation of benign versus malignant osteochondromas: preliminary observations. J Comput Assist Tomogr 2006; 30:858.
  125. Feldman F, Van Heertum R, Saxena C, Parisien M. 18FDG-PET applications for cartilage neoplasms. Skeletal Radiol 2005; 34:367.
  126. Lee FY, Yu J, Chang SS, et al. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am 2004; 86-A:2677.
  127. Normand AN, Cannon CP, Lewis VO, et al. Curettage of biopsy-diagnosed grade 1 periacetabular chondrosarcoma. Clin Orthop Relat Res 2007; 459:146.
  128. Kerr DA, Lopez HU, Deshpande V, et al. Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol 2013; 37:787.
  129. Enneking WF. A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res 1986; :9.
  130. Wolf RE, Enneking WF. The staging and surgery of musculoskeletal neoplasms. Orthop Clin North Am 1996; 27:473.
  131. American Joint Committee on Cancer Staging Manual, 5th, Fleming ID, Cooper JS, Henson DE, et al (Eds), Lippincott-Raven, Philadelphia 1997. p.143.
  132. American Joint Committee on Cancer Staging Manual, 7th, Edge SB, Byrd DR, Compton CC, et al (Eds), Spring, New York 2010. p.281.
  133. Leerapun T, Hugate RR, Inwards CY, et al. Surgical management of conventional grade I chondrosarcoma of long bones. Clin Orthop Relat Res 2007; 463:166.
  134. van der Geest IC, de Valk MH, de Rooy JW, et al. Oncological and functional results of cryosurgical therapy of enchondromas and chondrosarcomas grade 1. J Surg Oncol 2008; 98:421.
  135. Hickey M, Farrokhyar F, Deheshi B, et al. A systematic review and meta-analysis of intralesional versus wide resection for intramedullary grade I chondrosarcoma of the extremities. Ann Surg Oncol 2011; 18:1705.
  136. Donati D, Colangeli S, Colangeli M, et al. Surgical treatment of grade I central chondrosarcoma. Clin Orthop Relat Res 2010; 468:581.
  137. Bauer HC, Brosjö O, Kreicbergs A, Lindholm J. Low risk of recurrence of enchondroma and low-grade chondrosarcoma in extremities. 80 patients followed for 2-25 years. Acta Orthop Scand 1995; 66:283.
  138. Aarons C, Potter BK, Adams SC, et al. Extended intralesional treatment versus resection of low-grade chondrosarcomas. Clin Orthop Relat Res 2009; 467:2105.
  139. Streitbürger A, Ahrens H, Balke M, et al. Grade I chondrosarcoma of bone: the Münster experience. J Cancer Res Clin Oncol 2009; 135:543.
  140. Weber KL, Pring ME, Sim FH. Treatment and outcome of recurrent pelvic chondrosarcoma. Clin Orthop Relat Res 2002; :19.
  141. Shearer D, Patt JC, Cizic A, et al. Curettage and cryotherapy for treatment of low grade chondrosarcoma (abstract). Proc Connect Tissue Oncol Soc 2006; 12:760a.
  142. Wirbel RJ, Schulte M, Maier B, et al. Chondrosarcoma of the pelvis: oncologic and functional outcome. Sarcoma 2000; 4:161.
  143. Normand AN, Lin RP, Cannon CP, et al. Local recurrence of pelvic chondrosarcoma: an analysis of 19 patients (abstract). Proc Connect Tissue Oncol Soc 2006; 12:746a.
  144. Donati D, El Ghoneimy A, Bertoni F, et al. Surgical treatment and outcome of conventional pelvic chondrosarcoma. J Bone Joint Surg Br 2005; 87:1527.
  145. Schwab JH, Wenger D, Unni K, Sim FH. Does local recurrence impact survival in low-grade chondrosarcoma of the long bones? Clin Orthop Relat Res 2007; 462:175.
  146. Kim HS, Bindiganavile SS, Han I. Oncologic outcome after local recurrence of chondrosarcoma: Analysis of prognostic factors. J Surg Oncol 2015; 111:957.
  147. Le A, Ball D, Pitman A, et al. Chondrosarcoma of bone complicating Ollier's disease: report of a favourable response to radiotherapy. Australas Radiol 2003; 47:322.
  148. Normand AN, Ballo MT, Yasko AW, et al. Palliative radiation therapy for chondrosarcoma (abstract). Proc Connect Tissue Oncol Soc 2006; 12:745a.
  149. York JE, Berk RH, Fuller GN, et al. Chondrosarcoma of the spine: 1954 to 1997. J Neurosurg 1999; 90:73.
  150. Goda JS, Ferguson PC, O'Sullivan B, et al. High-risk extracranial chondrosarcoma: long-term results of surgery and radiation therapy. Cancer 2011; 117:2513.
  151. McNaney D, Lindberg RD, Ayala AG, et al. Fifteen year radiotherapy experience with chondrosarcoma of bone. Int J Radiat Oncol Biol Phys 1982; 8:187.
  152. Krochak R, Harwood AR, Cummings BJ, Quirt IC. Results of radical radiation for chondrosarcoma of bone. Radiother Oncol 1983; 1:109.
  153. Noël G, Habrand JL, Jauffret E, et al. Radiation therapy for chordoma and chondrosarcoma of the skull base and the cervical spine. Prognostic factors and patterns of failure. Strahlenther Onkol 2003; 179:241.
  154. Hug EB, Loredo LN, Slater JD, et al. Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J Neurosurg 1999; 91:432.
  155. Weber DC, Rutz HP, Pedroni ES, et al. Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. Int J Radiat Oncol Biol Phys 2005; 63:401.
  156. Rosenberg AE, Nielsen GP, Keel SB, et al. Chondrosarcoma of the base of the skull: a clinicopathologic study of 200 cases with emphasis on its distinction from chordoma. Am J Surg Pathol 1999; 23:1370.
  157. DeLaney TF, Liebsch NJ, Pedlow FX, et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys 2009; 74:732.
  158. Wyman JJ, Hornstein AM, Meitner PA, et al. Multidrug resistance-1 and p-glycoprotein in human chondrosarcoma cell lines: expression correlates with decreased intracellular doxorubicin and in vitro chemoresistance. J Orthop Res 1999; 17:935.
  159. Terek RM, Schwartz GK, Devaney K, et al. Chemotherapy and P-glycoprotein expression in chondrosarcoma. J Orthop Res 1998; 16:585.
  160. van Oosterwijk JG, Herpers B, Meijer D, et al. Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 2012; 23:1617.
  161. van Oosterwijk JG, Meijer D, van Ruler MA, et al. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFβ as potential targets. Am J Pathol 2013; 182:1347.
  162. van Maldegem AM, Gelderblom H, Palmerini E, et al. Outcome of advanced, unresectable conventional central chondrosarcoma. Cancer 2014; 120:3159.
  163. Italiano A, Mir O, Cioffi A, et al. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 2013; 24:2916.
  164. Suijker J, Oosting J, Koornneef A, et al. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget 2015; 6:12505.
  165. Li L, Paz AC, Wilky BA, et al. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells. PLoS One 2015; 10:e0133813.
  166. Mitchell AD, Ayoub K, Mangham DC, et al. Experience in the treatment of dedifferentiated chondrosarcoma. J Bone Joint Surg Br 2000; 82:55.
  167. Staals EL, Bacchini P, Mercuri M, Bertoni F. Dedifferentiated chondrosarcomas arising in preexisting osteochondromas. J Bone Joint Surg Am 2007; 89:987.
  168. Nooij MA, Whelan J, Bramwell VH, et al. Doxorubicin and cisplatin chemotherapy in high-grade spindle cell sarcomas of the bone, other than osteosarcoma or malignant fibrous histiocytoma: a European Osteosarcoma Intergroup Study. Eur J Cancer 2005; 41:225.
  169. Euroboss I protocol available online at www.radium.no/sarcoma/FTP/pdf/Euroboss1.pdf (Accessed on June 08, 2011).
  170. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 Suppl 3:iii113.
  171. La Rocca RV, Morgan KW, Paris K, Baeker TR. Recurrent chondrosarcoma of the cranial base: a durable response to ifosfamide-doxorubicin chemotherapy. J Neurooncol 1999; 41:281.
  172. Delepine N, Cornille H, Delepine G, et al. [Objective response of dedifferentiated chondrosarcoma to neoadjuvant chemotherapy (weekly high-dose methotrexate)]. Bull Cancer 1988; 75:393.
  173. Debruyne PR, Dumez H, Demey W, et al. Recurrent low- to intermediate-grade chondrosarcoma of the thumb with lung metastases: an objective response to trofosfamide. Onkologie 2007; 30:201.
  174. Schrage YM, Briaire-de Bruijn IH, de Miranda NF, et al. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res 2009; 69:6216.
  175. Klenke FM, Abdollahi A, Bertl E, et al. Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo. BMC Cancer 2007; 7:49.
  176. Grignani G, Palmerini E, Stacchiotti S, et al. A phase 2 trial of imatinib mesylate in patients with recurrent nonresectable chondrosarcomas expressing platelet-derived growth factor receptor-α or -β: An Italian Sarcoma Group study. Cancer 2011; 117:826.
  177. Schuetze SM, Wathen JK, Choy E, et al. SARC009, a phase II study of dasatanib: results in alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor (abstract 114). Data presented at the 16th annual meeting of the Connective Tissue Oncology Society, Paris France, November 11-13, 2010.
  178. Bernstein-Molho R, Kollender Y, Issakov J, et al. Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol 2012; 70:855.
  179. Cleton-Jansen AM, van Beerendonk HM, Baelde HJ, et al. Estrogen signaling is active in cartilaginous tumors: implications for antiestrogen therapy as treatment option of metastasized or irresectable chondrosarcoma. Clin Cancer Res 2005; 11:8028.
  180. Grifone TJ, Haupt HM, Podolski V, Brooks JJ. Immunohistochemical expression of estrogen receptors in chondrosarcomas and enchondromas. Int J Surg Pathol 2008; 16:31.
  181. Meijer D, Gelderblom H, Karperien M, et al. Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo. Clin Sarcoma Res 2011; 1:5.
  182. Sakimura R, Tanaka K, Yamamoto S, et al. The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res 2007; 13:275.
  183. Levine AM, Tulpule A, Quinn DI, et al. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol 2006; 24:1712.
  184. Herbst RS, Eckhardt SG, Kurzrock R, et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 2010; 28:2839.
  185. Camidge DR, Herbst RS, Gordon MS, et al. A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res 2010; 16:1256.
  186. National Comprehensive Cancer Network (NCCN). NCCN Clinical practice guidelines in oncology. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (Accessed on February 27, 2016).