Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Chemotherapy-induced alopecia

Aimee S Payne, MD, PhD
Section Editors
Reed E Drews, MD
Maria Hordinsky, MD
Deputy Editor
Diane MF Savarese, MD


Hair loss is a transient and usually (although not always) completely reversible consequence of cancer chemotherapy that is often psychologically devastating. For some patients, the emotional trauma may be so severe as to lead to discontinuing or refusing treatment that might otherwise be beneficial [1-4].

The anatomy and physiology of hair growth, the effects of chemotherapy, and possible means for preventing alopecia are discussed here.


The hair fiber is the product of the hair follicle and is a complex keratinized structure consisting of a cuticle, cortex and medulla. The hair follicle is composed of three main parts when viewed in longitudinal section (figure 1) [5]:

The lower portion, which extends from the base of the hair follicle to the insertion of the arrector pili muscle. This lower portion, in turn, is comprised of several major components:

The hair bulb, which contains the dermal papilla and hair matrix. The dermal papilla controls the number of matrix cells, which determines hair fiber size [6]. Melanocytes, which are responsible for hair color, are present among the matrix cells of the hair bulb.


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jan 2017. | This topic last updated: Wed Feb 04 00:00:00 GMT+00:00 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Dorr VJ. A practitioner's guide to cancer-related alopecia. Semin Oncol 1998; 25:562.
  2. Hussein AM. Chemotherapy-induced alopecia: new developments. South Med J 1993; 86:489.
  3. Bruning N. Hair, skin, and nail effects. In: Coping with chemotherapy, Dial Press, Garden City, NY 1985. p.191.
  4. Cline BW. Prevention of chemotherapy-induced alopecia: a review of the literature. Cancer Nurs 1984; 7:221.
  5. Elder D, Elenitsas R, Johnson BL, Murphy GF. Lever's Histopathology of the Skin, 9th ed, Lippincott Williams & Wilkins, Philadelphia 2004. p.1229.
  6. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med 1999; 341:491.
  7. Liu Y, Lyle S, Yang Z, Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 2003; 121:963.
  8. Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med 2001; 7:293.
  9. Sato N, Leopold PL, Crystal RG. Effect of adenovirus-mediated expression of Sonic hedgehog gene on hair regrowth in mice with chemotherapy-induced alopecia. J Natl Cancer Inst 2001; 93:1858.
  10. Kanti V, Nuwayhid R, Lindner J, et al. Analysis of quantitative changes in hair growth during treatment with chemotherapy or tamoxifen in patients with breast cancer: a cohort study. Br J Dermatol 2014; 170:643.
  11. Wu CY, Chen GS, Lan CC. Erosive pustular dermatosis of the scalp after gefitinib and radiotherapy for brain metastases secondary to lung cancer. Clin Exp Dermatol 2008; 33:106.
  12. Donovan JC, Ghazarian DM, Shaw JC. Scarring alopecia associated with use of the epidermal growth factor receptor inhibitor gefitinib. Arch Dermatol 2008; 144:1524.
  13. Murillas R, Larcher F, Conti CJ, et al. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J 1995; 14:5216.
  14. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356:125.
  15. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359:378.
  16. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24:2505.
  17. Autier J, Escudier B, Wechsler J, et al. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol 2008; 144:886.
  18. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 2011; 378:1931.
  19. Machado M, Moreb JS, Khan SA. Six cases of permanent alopecia after various conditioning regimens commonly used in hematopoietic stem cell transplantation. Bone Marrow Transplant 2007; 40:979.
  20. Palamaras I, Misciali C, Vincenzi C, et al. Permanent chemotherapy-induced alopecia: a review. J Am Acad Dermatol 2011; 64:604.
  21. Ljungman P, Hassan M, Békássy AN, et al. Busulfan concentration in relation to permanent alopecia in recipients of bone marrow transplants. Bone Marrow Transplant 1995; 15:869.
  22. Vowels M, Chan LL, Giri N, et al. Factors affecting hair regrowth after bone marrow transplantation. Bone Marrow Transplant 1993; 12:347.
  23. Tallon B, Blanchard E, Goldberg LJ. Permanent chemotherapy-induced alopecia: case report and review of the literature. J Am Acad Dermatol 2010; 63:333.
  24. Prevezas C, Matard B, Pinquier L, Reygagne P. Irreversible and severe alopecia following docetaxel or paclitaxel cytotoxic therapy for breast cancer. Br J Dermatol 2009; 160:883.
  25. Kluger N, Jacot W, Frouin E, et al. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients. Ann Oncol 2012; 23:2879.
  26. de Jonge ME, Mathôt RA, Dalesio O, et al. Relationship between irreversible alopecia and exposure to cyclophosphamide, thiotepa and carboplatin (CTC) in high-dose chemotherapy. Bone Marrow Transplant 2002; 30:593.
  27. National Canceer Institute Common Terminology Criteria for Adverse Events 9CTCAE), v4.03 available online at http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  28. Satterwhite B, Zimm S. The use of scalp hypothermia in the prevention of doxorubicin-induced hair loss. Cancer 1984; 54:34.
  29. Vendelbo Johansen L. Scalp hypothermia in the prevention of chemotherapy-induced alopecia. Acta Radiol Oncol 1985; 24:113.
  30. Tollenaar RA, Liefers GJ, Repelaer van Driel OJ, van de Velde CJ. Scalp cooling has no place in the prevention of alopecia in adjuvant chemotherapy for breast cancer. Eur J Cancer 1994; 30A:1448.
  31. Symonds RP, McCormick CV, Maxted KJ. Adriamycin alopecia prevented by cold air scalp cooling. Am J Clin Oncol 1986; 9:454.
  32. Komen MM, Smorenburg CH, van den Hurk CJ, Nortier JW. Factors influencing the effectiveness of scalp cooling in the prevention of chemotherapy-induced alopecia. Oncologist 2013; 18:885.
  33. Gregory RP, Cooke T, Middleton J, et al. Prevention of doxorubicin-induced alopedia by scalp hypothermia: relation to degree of cooling. Br Med J (Clin Res Ed) 1982; 284:1674.
  34. Hillen HF, Breed WP, Botman CJ. Scalp cooling by cold air for the prevention of chemotherapy-induced alopecia. Neth J Med 1990; 37:231.
  35. Tierney A, Taylor J, Closs SJ, et al. Hair loss due to cytotoxic chemotherapy: A prospective descriptive study. Br J Cancer 1990; 62:527.
  36. Lemenager M, Genouville C, Bessa EH, Bonneterre J. Docetaxel-induced alopecia can be prevented. Lancet 1995; 346:371.
  37. Lemenager M, Lecomte S, Bonneterre ME, et al. Effectiveness of cold cap in the prevention of docetaxel-induced alopecia. Eur J Cancer 1997; 33:297.
  38. Grevelman EG, Breed WP. Prevention of chemotherapy-induced hair loss by scalp cooling. Ann Oncol 2005; 16:352.
  39. Macduff C, Mackenzie T, Hutcheon A, et al. The effectiveness of scalp cooling in preventing alopecia for patients receiving epirubicin and docetaxel. Eur J Cancer Care (Engl) 2003; 12:154.
  40. Massey CS. A multicentre study to determine the efficacy and patient acceptability of the Paxman Scalp Cooler to prevent hair loss in patients receiving chemotherapy. Eur J Oncol Nurs 2004; 8:121.
  41. Parker R. The effectiveness of scalp hypothermia in preventing cyclophosphamide-induced alopecia. Oncol Nurs Forum 1987; 14:49.
  42. Knobf M, Kalm D, Mealia M. Clinical observations of scalp cooling in patients receiving multidrug chemotherapy. Oncol Nurs Forum 1989; 16(suppl):200.
  43. Middleton J, Franks D, Buchanan RB, et al. Failure of scalp hypothermia to prevent hair loss when cyclophosphamide is added to doxorubicin and vincristine. Cancer Treat Rep 1985; 69:373.
  44. Maurer M, Handjiski B, Paus R. Hair growth modulation by topical immunophilin ligands: induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia. Am J Pathol 1997; 150:1433.
  45. Wheelock JB, Myers MB, Krebs HB, Goplerud DR. Ineffectiveness of scalp hypothermia in the prevention of alopecia in patients treated with doxorubicin and cisplatin combinations. Cancer Treat Rep 1984; 68:1387.
  46. van den Hurk CJ, Peerbooms M, van de Poll-Franse LV, et al. Scalp cooling for hair preservation and associated characteristics in 1411 chemotherapy patients - results of the Dutch Scalp Cooling Registry. Acta Oncol 2012; 51:497.
  47. Giaccone G, Di Giulio F, Morandini MP, Calciati A. Scalp hypothermia in the prevention of doxorubicin-induced hair loss. Cancer Nurs 1988; 11:170.
  48. Katsimbri P, Bamias A, Pavlidis N. Prevention of chemotherapy-induced alopecia using an effective scalp cooling system. Eur J Cancer 2000; 36:766.
  49. Friedrichs K, Carstensen MH. Successful reduction of alopecia induced by anthracycline and taxane containing adjuvant chemotherapy in breast cancer - clinical evaluation of sensor-controlled scalp cooling. Springerplus 2014; 3:500.
  50. Shin H, Jo SJ, Kim DH, et al. Efficacy of interventions for prevention of chemotherapy-induced alopecia: a systematic review and meta-analysis. Int J Cancer 2015; 136:E442.
  51. Witman G, Cadman E, Chen M. Misuse of scalp hypothermia. Cancer Treat Rep 1981; 65:507.
  52. Spaeth D, Luporsi E, Weber B, et al. Efficacy and safety of cooling helmets (CH) for the prevention of chemotherapy-induced alopecia (CIA): A prospective study of 911 patients (abstract). J Clin Oncol 2008; 26:517s.
  53. Ron IG, Kalmus Y, Kalmus Z, et al. Scalp cooling in the prevention of alopecia in patients receiving depilating chemotherapy. Support Care Cancer 1997; 5:136.
  54. Rodriguez R, Machiavelli M, Leone B, et al. Minoxidil (Mx) as a prophylaxis of doxorubicin--induced alopecia. Ann Oncol 1994; 5:769.
  55. Duvic M, Lemak NA, Valero V, et al. A randomized trial of minoxidil in chemotherapy-induced alopecia. J Am Acad Dermatol 1996; 35:74.
  56. Sredni B, Caspi RR, Klein A, et al. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature 1987; 330:173.
  57. Kalechman Y, Albeck M, Oron M, et al. Protective and restorative role of AS101 in combination with chemotherapy. Cancer Res 1991; 51:1499.
  58. Sredni B, Albeck M, Tichler T, et al. Bone marrow-sparing and prevention of alopecia by AS101 in non-small-cell lung cancer patients treated with carboplatin and etoposide. J Clin Oncol 1995; 13:2342.
  59. Sredni B, Xu RH, Albeck M, et al. The protective role of the immunomodulator AS101 against chemotherapy-induced alopecia studies on human and animal models. Int J Cancer 1996; 65:97.
  60. Wood LA. Possible prevention of adriamycin-induced alopecia by tocopherol. N Engl J Med 1985; 312:1060.
  61. Martin-Jimenez M, Diaz-Rubio E, Gonzalez Larriba JL, Sangro B. Failure of high-dose tocopherol to prevent alopecia induced by doxorubicin. N Engl J Med 1986; 315:894.
  62. Perez JE, Macchiavelli M, Leone BA, et al. High-dose alpha-tocopherol as a preventive of doxorubicin-induced alopecia. Cancer Treat Rep 1986; 70:1213.
  63. Davis ST, Benson BG, Bramson HN, et al. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 2001; 291:134.
  64. Botchkarev VA, Komarova EA, Siebenhaar F, et al. p53 is essential for chemotherapy-induced hair loss. Cancer Res 2000; 60:5002.
  65. Jiménez JJ, Huang HS, Yunis AA. Treatment with ImuVert/N-acetylcysteine protects rats from cyclophosphamide/cytarabine-induced alopecia. Cancer Invest 1992; 10:271.
  66. Hussein AM, Jimenez JJ, McCall CA, Yunis AA. Protection from chemotherapy-induced alopecia in a rat model. Science 1990; 249:1564.
  67. Jimenez JJ, Yunis AA. Protection from 1-beta-D-arabinofuranosylcytosine-induced alopecia by epidermal growth factor and fibroblast growth factor in the rat model. Cancer Res 1992; 52:413.
  68. Dueland S, Sauer T, Lund-Johansen F, et al. Epidermal growth factor receptor inhibition induces trichomegaly. Acta Oncol 2003; 42:345.
  69. Hussein AM, Stuart A, Peters WP. Protection against chemotherapy-induced alopecia by cyclosporin A in the newborn rat animal model. Dermatology 1995; 190:192.
  70. Degiannis D, Stein S, Czarnecki M, et al. Cyclosporine-induced enhancement of interleukin 1 receptor expression by PHA-stimulated lymphocytes. Transplantation 1990; 50:1074.
  71. Jimenez JJ, Wong GH, Yunis AA. Interleukin 1 protects from cytosine arabinoside-induced alopecia in the rat model. FASEB J 1991; 5:2456.
  72. Jimenez JJ, Sawaya ME, Yunis AA. Interleukin 1 protects hair follicles from cytarabine (ARA-C)-induced toxicity in vivo and in vitro. FASEB J 1992; 6:911.
  73. Hussein AM. Interleukin 1 protects against 1-beta-D-arabinofuranosylcytosine-induced alopecia in the newborn rat animal model. Cancer Res 1991; 51:3329.
  74. Jimenez JJ, Yunis AA. Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res 1992; 52:5123.
  75. Jimenez JJ, Alvarez E, Bustamante CD, Yunis AA. Pretreatment with 1,25(OH)2D3 protects from Cytoxan-induced alopecia without protecting the leukemic cells from Cytoxan. Am J Med Sci 1995; 310:43.
  76. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med 1989; 320:980.