Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Causes of congenital and acquired sideroblastic anemias

Sylvia S Bottomley, MD
Section Editor
Stanley L Schrier, MD
Deputy Editor
Jennifer S Tirnauer, MD


For a number of forms of congenital sideroblastic anemia, underlying defects have been established at the molecular level (table 1); they primarily disrupt cellular pathways in the mitochondria of erythroid cells (figure 1). These defects involve genes encoding [1,2]:

The erythroid 5-aminolevulinate synthase isoform (ALAS2)

A mitochondrial amino acid transporter (SLC25A38)

Glutaredoxin 5 (GLRX5)

Ferrochelatase (FECH)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Sep 2016. | This topic last updated: Sep 25, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Bottomley SS. Sideroblastic anemias. In: Wintrobe's Clinical Hematology, 13th ed, Greer JP, Arber DA, Glader B, et al. (Eds), Lippincott, Williams and Wilkins, Philadelphia 2014. p.643.
  2. Bottomley SS, Fleming MD. Sideroblastic anemia: diagnosis and management. Hematol Oncol Clin North Am 2014; 28:653.
  3. Bergmann AK, Campagna DR, McLoughlin EM, et al. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer 2010; 54:273.
  4. Ducamp S, Kannengiesser C, Touati M, et al. Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations. Hum Mutat 2011; 32:590.
  5. Liu G, Guo S, Kang H, et al. Mutation spectrum in Chinese patients affected by congenital sideroblastic anemia and a search for a genotype-phenotype relationship. Haematologica 2013; 98:e158.
  6. The Human Gene Mutation Database; HGMD®Professional 2012.2 http://www.hgmd.org (Accessed on July 01, 2013).
  7. Kaneko K, Furuyama K, Fujiwara T, et al. Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia. Haematologica 2014; 99:252.
  8. Campagna DR, de Bie CI, Schmitz-Abe K, et al. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations. Am J Hematol 2014; 89:315.
  9. Donker AE, Raymakers RA, Nieuwenhuis HK, et al. X-linked sideroblastic anaemia due to ALAS₂ mutations in the Netherlands: a disease in disguise. Neth J Med 2014; 72:210.
  10. Bottomley SS, Wise PD, Wasson EG, et al. X-linked sideroblastic anemia in ten female probands due to ALAS2 mutations and skewed X chromosome inactivation. Am J Hum Genet 1998; 63(Suppl):A352.
  11. Cazzola M, May A, Bergamaschi G, et al. Familial-skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females. Blood 2000; 96:4363.
  12. Aivado M, Gattermann N, Rong A, et al. X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns. Blood Cells Mol Dis 2006; 37:40.
  13. Sutherland GR, Baker E, Callen DF, et al. 5-Aminolevulinate synthase is at 3p21 and thus not the primary defect in X-linked sideroblastic anemia. Am J Hum Genet 1988; 43:331.
  14. Bishop DF, Henderson AS, Astrin KH. Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics 1990; 7:207.
  15. May BK, Dogra SC, Sadlon TJ, et al. Molecular regulation of heme biosynthesis in higher vertebrates. Prog Nucleic Acid Res Mol Biol 1995; 51:1.
  16. Cox TC, Bawden MJ, Abraham NG, et al. Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am J Hum Genet 1990; 46:107.
  17. Nakajima O, Takahashi S, Harigae H, et al. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload. EMBO J 1999; 18:6282.
  18. Nakajima O, Okano S, Harada H, et al. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes Cells 2006; 11:685.
  19. Bottomley SS, Wise PD, Wasson EG, et al. The spectrum of molecular defects in the erythroid 5-aminolevulinate synthase gene in hereditary sideroblastic anemia (abstract). Blood 1998; 92:669a.
  20. Furuyama K, Harigae H, Heller T, et al. Arg452 substitution of the erythroid-specific 5-aminolaevulinate synthase, a hot spot mutation in X-linked sideroblastic anaemia, does not itself affect enzyme activity. Eur J Haematol 2006; 76:33.
  21. Bishop DF, Tchaikovskii V, Hoffbrand AV, et al. X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2). J Biol Chem 2012; 287:28943.
  22. Rose C, Oudin C, Fournier M, et al. A new ALAS2 mutation inducing a male lethal X-linked sideroblastic anemia (abstract). Am Soc Hematol Program 2013; :Abstract 2199.
  23. Furuyama K, Sassa S. Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia. J Clin Invest 2000; 105:757.
  24. Bekri S, May A, Cotter PD, et al. A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood 2003; 102:698.
  25. Shoolingin-Jordan PM, Al-Daihan S, Alexeev D, et al. 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochim Biophys Acta 2003; 1647:361.
  26. Astner I, Schulze JO, van den Heuvel J, et al. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 2005; 24:3166.
  27. Harigae H, Furuyama K, Kudo K, et al. A novel mutation of the erythroid-specific gamma-Aminolevulinate synthase gene in a patient with non-inherited pyridoxine-responsive sideroblastic anemia. Am J Hematol 1999; 62:112.
  28. Cox TC, Bottomley SS, Wiley JS, et al. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. N Engl J Med 1994; 330:675.
  29. Guernsey DL, Jiang H, Campagna DR, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet 2009; 41:651.
  30. Ye H, Jeong SY, Ghosh MC, et al. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 2010; 120:1749.
  31. Wingert RA, Galloway JL, Barut B, et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 2005; 436:1035.
  32. Camaschella C, Campanella A, De Falco L, et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 2007; 110:1353.
  33. Rüfenacht UB, Gouya L, Schneider-Yin X, et al. Systematic analysis of molecular defects in the ferrochelatase gene from patients with erythropoietic protoporphyria. Am J Hum Genet 1998; 62:1341.
  34. Holme SA, Worwood M, Anstey AV, et al. Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 2007; 110:4108.
  35. Scott AJ, Ansford AJ, Webster BH, Stringer HC. Erythropoietic protoporphyria with features of a sideroblastic anaemia terminating in liver failure. Am J Med 1973; 54:251.
  36. Rademakers LH, Koningsberger JC, Sorber CW, et al. Accumulation of iron in erythroblasts of patients with erythropoietic protoporphyria. Eur J Clin Invest 1993; 23:130.
  37. Bottomley SS, Tanaka M, Everett MA. Diminished erythroid ferrochelatase activity in protoporphyria. J Lab Clin Med 1975; 86:126.
  38. Tuckfield A, Ratnaike S, Hussein S, Metz J. A novel form of hereditary sideroblastic anaemia with macrocytosis. Br J Haematol 1997; 97:279.
  39. Pagon RA, Bird TD, Detter JC, Pierce I. Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder. J Med Genet 1985; 22:267.
  40. Raskind WH, Wijsman E, Pagon RA, et al. X-linked sideroblastic anemia and ataxia: linkage to phosphoglycerate kinase at Xq13. Am J Hum Genet 1991; 48:335.
  41. Cox TC, Kozman HM, Raskind WH, et al. Identification of a highly polymorphic marker within intron 7 of the ALAS2 gene and suggestion of at least two loci for X-linked sideroblastic anemia. Hum Mol Genet 1992; 1:639.
  42. Allikmets R, Raskind WH, Hutchinson A, et al. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 1999; 8:743.
  43. Bekri S, Kispal G, Lange H, et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000; 96:3256.
  44. Maguire A, Hellier K, Hammans S, May A. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 2001; 115:910.
  45. D'Hooghe M, Selleslag D, Mortier G, et al. X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation. Eur J Paediatr Neurol 2012; 16:730.
  46. Pondarre C, Campagna DR, Antiochos B, et al. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007; 109:3567.
  47. Lill R, Mühlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 2008; 77:669.
  48. Casas KA, Fischel-Ghodsian N. Mitochondrial myopathy and sideroblastic anemia. Am J Med Genet A 2004; 125A:201.
  49. Bykhovskaya Y, Casas K, Mengesha E, et al. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 2004; 74:1303.
  50. Zeharia A, Fischel-Ghodsian N, Casas K, et al. Mitochondrial myopathy, sideroblastic anemia, and lactic acidosis: an autosomal recessive syndrome in Persian Jews caused by a mutation in the PUS1 gene. J Child Neurol 2005; 20:449.
  51. Metodiev MD, Assouline Z, Landrieu P, et al. Unusual clinical expression and long survival of a pseudouridylate synthase (PUS1) mutation into adulthood. Eur J Hum Genet 2015; 23:880.
  52. Fernandez-Vizarra E, Berardinelli A, Valente L, et al. Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 2007; 44:173.
  53. Patton JR, Bykhovskaya Y, Mengesha E, et al. Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 2005; 280:19823.
  54. Riley LG, Menezes MJ, Rudinger-Thirion J, et al. Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia. Orphanet J Rare Dis 2013; 8:193.
  55. Shahni R, Wedatilake Y, Cleary MA, et al. A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations. Am J Med Genet A 2013; 161A:2334.
  56. Nakajima J, Eminoglu TF, Vatansever G, et al. A novel homozygous YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 2. J Hum Genet 2014; 59:229.
  57. Sasarman F, Nishimura T, Thiffault I, Shoubridge EA. A novel mutation in YARS2 causes myopathy with lactic acidosis and sideroblastic anemia. Hum Mutat 2012; 33:1201.
  58. Wiseman DH, May A, Jolles S, et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 2013; 122:112.
  59. Chakraborty PK, Schmitz-Abe K, Kennedy EK, et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 2014; 124:2867.
  60. Manea EM, Leverger G, Bellmann F, et al. Pearson syndrome in the neonatal period: two case reports and review of the literature. J Pediatr Hematol Oncol 2009; 31:947.
  61. Rötig A, Bourgeron T, Chretien D, et al. Spectrum of mitochondrial DNA rearrangements in the Pearson marrow-pancreas syndrome. Hum Mol Genet 1995; 4:1327.
  62. Bader-Meunier B, Miélot F, Breton-Gorius J, et al. Hematologic involvement in mitochondrial cytopathies in childhood: a retrospective study of bone marrow smears. Pediatr Res 1999; 46:158.
  63. Neufeld EJ, Fleming JC, Tartaglini E, Steinkamp MP. Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol Dis 2001; 27:135.
  64. Abdulsalam AH, Sabeeh N, Ibrahim ZI, Bain BJ. Thiamine-responsive megaloblastic anemia in an Iraqi girl. Am J Hematol 2014; 89:659.
  65. Labay V, Raz T, Baron D, et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 1999; 22:300.
  66. Fleming JC, Tartaglini E, Steinkamp MP, et al. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 1999; 22:305.
  67. Diaz GA, Banikazemi M, Oishi K, et al. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet 1999; 22:309.
  68. Bergmann AK, Sahai I, Falcone JF, et al. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J Pediatr 2009; 155:888.
  69. Baron D, Assaraf YG, Cohen N, Aronheim A. Lack of plasma membrane targeting of a G172D mutant thiamine transporter derived from Rogers syndrome family. Mol Med 2002; 8:462.
  70. Subramanian VS, Marchant JS, Parker I, Said HM. Cell biology of the human thiamine transporter-1 (hTHTR1). Intracellular trafficking and membrane targeting mechanisms. J Biol Chem 2003; 278:3976.
  71. Boros LG, Steinkamp MP, Fleming JC, et al. Defective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA). Blood 2003; 102:3556.
  72. Abboud MR, Alexander D, Najjar SS. Diabetes mellitus, thiamine-dependent megaloblastic anemia, and sensorineural deafness associated with deficient alpha-ketoglutarate dehydrogenase activity. J Pediatr 1985; 107:537.
  73. Ricketts CJ, Minton JA, Samuel J, et al. Thiamine-responsive megaloblastic anaemia syndrome: long-term follow-up and mutation analysis of seven families. Acta Paediatr 2006; 95:99.
  74. Kushner JP, Lee GR, Wintrobe MM, Cartwright GE. Idiopathic refractory sideroblastic anemia: clinical and laboratory investigation of 17 patients and review of the literature. Medicine (Baltimore) 1971; 50:139.
  75. May A, Al-Sabah AI, Lawlwss SL. Acquired sideroblastic anemia unresponsive to pyridoxine caused by a somatic mutation in ALA synthase 2 (Abstract). Blood 2005; 106:988a.
  76. Bottomley SS, Muller-Eberhard U. Pathophysiology of heme synthesis. Semin Hematol 1988; 25:282.
  77. Sarkany RP, Ross G, Willis F. Acquired erythropoietic protoporphyria as a result of myelodysplasia causing loss of chromosome 18. Br J Dermatol 2006; 155:464.
  78. Wulfert M, Küpper AC, Tapprich C, et al. Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp Hematol 2008; 36:577.
  79. Gattermann N, Retzlaff S, Wang YL, et al. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997; 90:4961.
  80. Gattermann N. Mitochondrial DNA mutations in the hematopoietic system. Leukemia 2004; 18:18.
  81. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478:64.
  82. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365:1384.
  83. Patnaik MM, Lasho TL, Hodnefield JM, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 2012; 119:569.
  84. Visconte V, Makishima H, Jankowska A, et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26:542.
  85. Damm F, Kosmider O, Gelsi-Boyer V, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 2012; 119:3211.
  86. Broséus J, Alpermann T, Wulfert M, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 2013; 27:1826.
  87. Boultwood J, Pellagatti A, Nikpour M, et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One 2008; 3:e1970.
  88. Nikpour M, Scharenberg C, Liu A, et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia 2013; 27:889.
  89. Visconte V, Rogers HJ, Singh J, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012; 120:3173.
  90. Ambaglio I, Malcovati L, Papaemmanuil E, et al. Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1. Haematologica 2013; 98:420.
  91. Eichner ER, Hillman RS. The evolution of anemia in alcoholic patients. Am J Med 1971; 50:218.
  92. Savage D, Lindenbaum J. Anemia in alcoholics. Medicine (Baltimore) 1986; 65:322.
  93. Meagher RC, Sieber F, Spivak JL. Suppression of hematopoietic-progenitor-cell proliferation by ethanol and acetaldehyde. N Engl J Med 1982; 307:845.
  94. Burke JP, Rubin E. The effects of ethanol and acetaldehyde on the products of protein synthesis by liver mitochondria. Lab Invest 1979; 41:393.
  95. Bottomley SS. Sideroblastic anaemia. In: Iron in Biochemistry and Medicine II, Jacobs A, Worwood M (Eds), Academic Press, London 1980. p.363.
  96. Colucci G, Silzle T, Solenthaler M. Pyrazinamide-induced sideroblastic anemia. Am J Hematol 2012; 87:305.
  97. Kloss P, Xiong L, Shinabarger DL, Mankin AS. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J Mol Biol 1999; 294:93.
  98. Yunis AA, Adamson JW. Differential in vitro sensitivity of marrow erythroid and granulocytic colony forming cells to chloramphenicol. Am J Hematol 1977; 2:355.
  99. Saini N, Jacobson JO, Jha S, et al. The perils of not digging deep enough--uncovering a rare cause of acquired anemia. Am J Hematol 2012; 87:413.
  100. Willekens C, Dumezy F, Boyer T, et al. Linezolid induces ring sideroblasts. Haematologica 2013; 98:e138.
  101. Peled T, Glukhman E, Hasson N, et al. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 2005; 33:1092.
  102. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985; 65:238.
  103. Madsen E, Gitlin JD. Copper deficiency. Curr Opin Gastroenterol 2007; 23:187.
  104. Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci 2007; 30:317.
  105. O'Brien H, Amess JA, Mollin DL. Recurrent thrombocytopenia, erythroid hypoplasia and sideroblastic anaemia associated with hypothermia. Br J Haematol 1982; 51:451.