Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 42

of 'Basic principles and technique of electrical cardioversion and defibrillation'

Improved defibrillator waveform safety factor with biphasic waveforms.
Jones JL, Jones RE
Am J Physiol. 1983;245(1):H60.
Excitation thresholds and arrhythmias were studied in "adult-type" cultured chick embryo myocardial cells after electric field stimulation with biphasic, truncated, and rectified underdamped RLC (resistance-inductance-capacitance) type waveforms, to test the hypothesis that the negative phase of biphasic waveforms ameliorates membrane dysfunction induced by the initial positive portion. Photocell mechanograms and intracellular microelectrodes monitored extrasystoles and depolarization-induced arrhythmias. Rectifying or truncating biphasic waveforms did not alter the excitation threshold. However, shock intensities producing specific postshock arrhythmias or a specific severity of postshock prolonged depolarization differed significantly when biphasic waveforms were truncated or rectified. The voltage gradient producing a specific dysfunction was 12-14% lower for the truncated version than for the biphasic; that for the rectified version was 17-27% lower than for the biphasic version (although both contained the same energy). Safety factor, the ratio between shock intensity producing specific dysfunction and that producing excitation, was determined for each waveform. Biphasic waveforms had larger safety factors than truncated or rectified waveforms. Since safety factor, as measured in cultured myocardial cells, closely corresponds with in situ defibrillating effectiveness (14), the significantly higher safety factors of biphasic waveforms suggest that carefully shaped biphasic waveforms might improve the efficacy and safety of cardiac defibrillation procedures.