Medline ® Abstract for Reference 32

of 'Bacterial vaginosis'

32
TI
Gene polymorphisms of Toll-like and related recognition receptors in relation to the vaginal carriage of Gardnerella vaginalis and Atopobium vaginae.
AU
Verstraelen H, Verhelst R, Nuytinck L, Roelens K, De Meester E, De Vos D, Van Thielen M, Rossau R, Delva W, De Backer E, Vaneechoutte M, Temmerman M
SO
J Reprod Immunol. 2009;79(2):163.
 
Host genetic factors have previously been found to act as determinants of differential susceptibility to major infectious diseases. It is less clear whether such polymorphisms may also impose on pathogen recognition in mucosal overgrowth conditions such as bacterial vaginosis, an anaerobic overgrowth condition characterised by the presence of a vaginal biofilm consisting of the Gram-positive anaerobes Gardnerella vaginalis and Atopobium vaginae. We selected 34 single nucleotide polymorphisms pertaining to 9 genes involved with Toll-like receptor-mediated pathogen recognition and/or regulation (LBP, CD14, TLR1, TLR2, TLR4, TLR6, MD2, CARD15 and SIGIRR) and assessed in a nested case-control study their putative association with bacterial vaginosis, as diagnosed by Gram staining, and with the vaginal carriage of A. vaginae and G. vaginalis, as determined by species-specific PCR, among 144 pregnant women. Carriage of G. vaginalis during early pregnancy was associated with the -1155A>G substitution in the promoter region of the MD2 gene (p=0.041). The presence of A. vaginae during the first half of the pregnancy was significantly associated with the CD14 intron 2 1342G>T (p=0.039), the TLR1 exon 4 743A>G (p=0.038), and the CARD15 exon 4 14772A>T (p=0.012) polymorphisms, and marginally significantly associated with the LBP exon13 26842C>T (p=0.056), the CD14 promoter -260C>T (p=0.052), and the TLR1 promoter -7202A>G (p=0.062) polymorphisms. However, no association between gene polymorphisms and bacterial vaginosis as such could be documented. Our data suggest that some degree of genetic susceptibility involving pathogen recognition may occur with the key bacterial vaginosis organism, A. vaginae.
AD
Department of Obstetrics&Gynaecology, Faculty of Medicine&Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium. Hans.Verstraelen@UGent.be
PMID