Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Aspirin-exacerbated respiratory disease

Tanya M Laidlaw, MD
Elliot Israel, MD
Section Editor
Peter J Barnes, DM, DSc, FRCP, FRS
Deputy Editors
Anna M Feldweg, MD
Helen Hollingsworth, MD


Aspirin-exacerbated respiratory disease (AERD), which is also called NSAID-exacerbated respiratory disease (NERD), refers to the combination of asthma, chronic rhinosinusitis (CRS) with nasal polyposis, and acute upper and lower respiratory tract reactions to ingestion of aspirin (acetylsalicylic acid, ASA) and other cyclooxygenase-1 (COX-1)-inhibiting nonsteroidal anti-inflammatory drugs (NSAIDs).

The first case of aspirin sensitivity in a patient with asthma was described in 1902, a few years after the introduction of aspirin into clinical use. In 1968, Samter and Beers described a triad consisting of asthma, aspirin sensitivity, and nasal polyps [1], which came to be known as Samter's triad.

An overview of AERD with emphasis on pathophysiology and the management of asthma will be presented here. Other types of hypersensitivity reactions to NSAIDs and the treatment of patients with asthma, CRS, and nasal polyposis are discussed separately. (See "NSAIDs (including aspirin): Allergic and pseudoallergic reactions" and "Diagnostic challenge and desensitization protocols for NSAID reactions" and "An overview of asthma management" and "Chronic rhinosinusitis: Management".)


NSAIDs — The primary effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is to inhibit cyclooxygenase (also called prostaglandin synthase), thereby impairing the ultimate transformation of arachidonic acid (AA) to prostaglandins, prostacyclin, and thromboxanes and enhancing production of leukotrienes. Two related isoforms of the cyclooxygenase (COX) enzyme have been described, COX-1 and COX-2. Some NSAIDs have a greater inhibitory effect on COX-1 and others on COX-2. COX-1 inhibition is the stimulus for acute reactions to aspirin (ASA)/NSAIDs in aspirin-exacerbated respiratory disease (AERD).

In this topic review, the term "NSAID" includes aspirin (ASA). However, in some clearly marked sections, aspirin is discussed exclusive of other NSAIDs.

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Oct 2017. | This topic last updated: May 05, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Samter M, Beers RF Jr. Intolerance to aspirin. Clinical studies and consideration of its pathogenesis. Ann Intern Med 1968; 68:975.
  2. Fahrenholz JM. Natural history and clinical features of aspirin-exacerbated respiratory disease. Clin Rev Allergy Immunol 2003; 24:113.
  3. Berges-Gimeno MP, Simon RA, Stevenson DD. The natural history and clinical characteristics of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2002; 89:474.
  4. Rajan JP, Wineinger NE, Stevenson DD, White AA. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: A meta-analysis of the literature. J Allergy Clin Immunol 2015; 135:676.
  5. Nabavi M, Esmaeilzadeh H, Arshi S, et al. Aspirin hypersensitivity in patients with chronic rhinosinusitis and nasal polyposis: frequency and contributing factors. Am J Rhinol Allergy 2014; 28:239.
  6. Shore SA, Austen KF, Drazen JM. Lung biology in health and disease: Lung cell biology. In: Eicosanoids and the lung, L'Enfant C, Massaro D (Eds), Marcel Dekker, New York 1989.
  7. Laitinen LA, Laitinen A, Haahtela T, et al. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993; 341:989.
  8. Dahlén B. Treatment of aspirin-intolerant asthma with antileukotrienes. Am J Respir Crit Care Med 2000; 161:S137.
  9. Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R, Teran LM. Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 2013; 46:566.
  10. Bochenek G, Nagraba K, Nizankowska E, Szczeklik A. A controlled study of 9alpha,11beta-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. J Allergy Clin Immunol 2003; 111:743.
  11. Campo P, Ayuso P, Salas M, et al. Mediator release after nasal aspirin provocation supports different phenotypes in subjects with hypersensitivity reactions to NSAIDs. Allergy 2013; 68:1001.
  12. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2015; 135:245.
  13. Sladek K, Dworski R, Soja J, et al. Eicosanoids in bronchoalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. Am J Respir Crit Care Med 1994; 149:940.
  14. Antczak A, Montuschi P, Kharitonov S, et al. Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 2002; 166:301.
  15. Knapp HR, Sladek K, Fitzgerald GA. Increased excretion of leukotriene E4 during aspirin-induced asthma. J Lab Clin Med 1992; 119:48.
  16. Ferreri NR, Howland WC, Stevenson DD, Spiegelberg HL. Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin. Am Rev Respir Dis 1988; 137:847.
  17. Daffern PJ, Muilenburg D, Hugli TE, Stevenson DD. Association of urinary leukotriene E4 excretion during aspirin challenges with severity of respiratory responses. J Allergy Clin Immunol 1999; 104:559.
  18. Lee TH, Woszczek G, Farooque SP. Leukotriene E4: perspective on the forgotten mediator. J Allergy Clin Immunol 2009; 124:417.
  19. Sestini P, Armetti L, Gambaro G, et al. Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 1996; 153:572.
  20. Ying S, Meng Q, Scadding G, et al. Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol 2006; 117:312.
  21. Babu KS, Salvi SS. Aspirin and asthma. Chest 2000; 118:1470.
  22. Mastalerz L, Sanak M, Gawlewicz-Mroczka A, et al. Prostaglandin E2 systemic production in patients with asthma with and without aspirin hypersensitivity. Thorax 2008; 63:27.
  23. Laidlaw TM, Kidder MS, Bhattacharyya N, et al. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 2012; 119:3790.
  24. Maclouf JA, Murphy RC. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4. J Biol Chem 1988; 263:174.
  25. Guilemany JM, Roca-Ferrer J, Mullol J. Cyclooxygenases and the pathogenesis of chronic rhinosinusitis and nasal polyposis. Curr Allergy Asthma Rep 2008; 8:219.
  26. Stevenson DD, Zuraw BL. Pathogenesis of aspirin-exacerbated respiratory disease. Clin Rev Allergy Immunol 2003; 24:169.
  27. Cai Y, Bjermer L, Halstensen TS. Bronchial mast cells are the dominating LTC4S-expressing cells in aspirin-tolerant asthma. Am J Respir Cell Mol Biol 2003; 29:683.
  28. Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998; 101:834.
  29. Nasser S, Christie PE, Pfister R, et al. Effect of endobronchial aspirin challenge on inflammatory cells in bronchial biopsy samples from aspirin-sensitive asthmatic subjects. Thorax 1996; 51:64.
  30. Fischer AR, Rosenberg MA, Lilly CM, et al. Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 1994; 94:1046.
  31. Adamjee J, Suh YJ, Park HS, et al. Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 2006; 209:392.
  32. Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet 1997; 350:1599.
  33. Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 2000; 23:290.
  34. Sousa AR, Parikh A, Scadding G, et al. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 2002; 347:1493.
  35. Sanak M, Levy BD, Clish CB, et al. Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 2000; 16:44.
  36. Gaber F, Daham K, Higashi A, et al. Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax 2008; 63:1076.
  37. Israel E, Fischer AR, Rosenberg MA, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148:1447.
  38. Christie PE, Smith CM, Lee TH. The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am Rev Respir Dis 1991; 144:957.
  39. Nasser SM, Bell GS, Foster S, et al. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma. Thorax 1994; 49:749.
  40. Picado C, Fernandez-Morata JC, Juan M, et al. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 1999; 160:291.
  41. Kowalski ML, Pawliczak R, Wozniak J, et al. Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Am J Respir Crit Care Med 2000; 161:391.
  42. Pierzchalska M, Szabó Z, Sanak M, et al. Deficient prostaglandin E2 production by bronchial fibroblasts of asthmatic patients, with special reference to aspirin-induced asthma. J Allergy Clin Immunol 2003; 111:1041.
  43. Laidlaw TM, Cutler AJ, Kidder MS, et al. Prostaglandin E2 resistance in granulocytes from patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2014; 133:1692.
  44. Corrigan CJ, Napoli RL, Meng Q, et al. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. J Allergy Clin Immunol 2012; 129:1636.
  45. Liu T, Laidlaw TM, Katz HR, Boyce JA. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A 2013; 110:16987.
  46. Lee SH, Rhim T, Choi YS, et al. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am J Respir Crit Care Med 2006; 173:370.
  47. Ta V, White AA. Survey-Defined Patient Experiences With Aspirin-Exacerbated Respiratory Disease. J Allergy Clin Immunol Pract 2015; 3:711.
  48. Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE Investigators. European Network on Aspirin-Induced Asthma. Eur Respir J 2000; 16:432.
  49. Jenkins C, Costello J, Hodge L. Systematic review of prevalence of aspirin induced asthma and its implications for clinical practice. BMJ 2004; 328:434.
  50. Hedman J, Kaprio J, Poussa T, Nieminen MM. Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int J Epidemiol 1999; 28:717.
  51. Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 2003; 111:913.
  52. Hope AP, Woessner KA, Simon RA, Stevenson DD. Rational approach to aspirin dosing during oral challenges and desensitization of patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2009; 123:406.
  53. Dursun AB, Woessner KA, Simon RA, et al. Predicting outcomes of oral aspirin challenges in patients with asthma, nasal polyps, and chronic sinusitis. Ann Allergy Asthma Immunol 2008; 100:420.
  54. Shi J, Misso NL, Duffy DL, et al. Cyclooxygenase-1 gene polymorphisms in patients with different asthma phenotypes and atopy. Eur Respir J 2005; 26:249.
  55. Barranco P, Bobolea I, Larco JI, et al. Diagnosis of aspirin-induced asthma combining the bronchial and the oral challenge tests: a pilot study. J Investig Allergol Clin Immunol 2009; 19:446.
  56. Emanuel IA, Shah SB. Chronic rhinosinusitis: allergy and sinus computed tomography relationships. Otolaryngol Head Neck Surg 2000; 123:687.
  57. Poznanovic SA, Kingdom TT. Total IgE levels and peripheral eosinophilia: correlation with mucosal disease based on computed tomographic imaging of the paranasal sinus. Arch Otolaryngol Head Neck Surg 2007; 133:701.
  58. Fountain CR, Mudd PA, Ramakrishnan VR, et al. Characterization and treatment of patients with chronic rhinosinusitis and nasal polyps. Ann Allergy Asthma Immunol 2013; 111:337.
  59. Newman LJ, Platts-Mills TA, Phillips CD, et al. Chronic sinusitis. Relationship of computed tomographic findings to allergy, asthma, and eosinophilia. JAMA 1994; 271:363.
  60. Bryson JM, Tasca RA, Rowe-Jones JM. Local and systemic eosinophilia in patients undergoing endoscopic sinus surgery for chronic rhinosinusitis with and without polyposis. Clin Otolaryngol Allied Sci 2003; 28:55.
  61. Cardet JC, White AA, Barrett NA, et al. Alcohol-induced respiratory symptoms are common in patients with aspirin exacerbated respiratory disease. J Allergy Clin Immunol Pract 2014; 2:208.
  62. Shah NH, Schneider TR, DeFaria Yeh D, et al. Eosinophilia-Associated Coronary Artery Vasospasm in Patients with Aspirin-Exacerbated Respiratory Disease. J Allergy Clin Immunol Pract 2016; 4:1215.
  63. Lee-Sarwar K, Johns C, Laidlaw TM, Cahill KN. Tolerance of daily low-dose aspirin does not preclude aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract 2015; 3:449.
  64. Williams AN, Simon RA, Woessner KM, Stevenson DD. The relationship between historical aspirin-induced asthma and severity of asthma induced during oral aspirin challenges. J Allergy Clin Immunol 2007; 120:273.
  65. Dahlén SE, Malmström K, Nizankowska E, et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 2002; 165:9.
  66. Lee DK, Haggart K, Robb FM, Lipworth BJ. Montelukast protects against nasal lysine-aspirin challenge in patients with aspirin-induced asthma. Eur Respir J 2004; 24:226.
  67. Dahlén B, Nizankowska E, Szczeklik A, et al. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998; 157:1187.
  68. White A, Ludington E, Mehra P, et al. Effect of leukotriene modifier drugs on the safety of oral aspirin challenges. Ann Allergy Asthma Immunol 2006; 97:688.
  69. Lee RU, Stevenson DD. Aspirin-exacerbated respiratory disease: evaluation and management. Allergy Asthma Immunol Res 2011; 3:3.
  70. Lee RU, White AA, Ding D, et al. Use of intranasal ketorolac and modified oral aspirin challenge for desensitization of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2010; 105:130.
  71. Settipane RA, Schrank PJ, Simon RA, et al. Prevalence of cross-sensitivity with acetaminophen in aspirin-sensitive asthmatic subjects. J Allergy Clin Immunol 1995; 96:480.
  72. Morales DR, Lipworth BJ, Guthrie B, et al. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: Meta-analysis of controlled clinical trials. J Allergy Clin Immunol 2014; 134:40.
  73. Steinke JW, Culp JA, Kropf E, Borish L. Modulation by aspirin of nuclear phospho-signal transducer and activator of transcription 6 expression: Possible role in therapeutic benefit associated with aspirin desensitization. J Allergy Clin Immunol 2009; 124:724.
  74. Katial RK, Strand M, Prasertsuntarasai T, et al. The effect of aspirin desensitization on novel biomarkers in aspirin-exacerbated respiratory diseases. J Allergy Clin Immunol 2010; 126:738.
  75. Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 2013; 131:110.
  76. Aksu K, Kurt E. Aspirin tolerance following omalizumab therapy in a patient with aspirin-exacerbated respiratory disease. Allergol Immunopathol (Madr) 2013; 41:208.
  77. Bobolea I, Barranco P, Fiandor A, et al. Omalizumab: a potential new therapeutic approach for aspirin-exacerbated respiratory disease. J Investig Allergol Clin Immunol 2010; 20:448.
  78. Bergmann KC, Zuberbier T, Church MK. Omalizumab in the treatment of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract 2015; 3:459.
  79. Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol 2011; 128:989.