Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Approach to the child with acute diarrhea in resource-limited countries

Jason B Harris, MD, MPH
Mark Pietroni, MA, MBBChir, FRCP, DTM&H
Section Editors
Stephen B Calderwood, MD
Morven S Edwards, MD
Deputy Editor
Allyson Bloom, MD


Diarrhea is the passage of loose or watery stools at least three times in a 24 hour period. Diarrheal illness is the second leading cause of child mortality; among children younger than five years, it causes 1.5 to 2 million deaths annually [1,2]. In resource-limited countries, infants experience a median of six episodes annually; children experience a median of three episodes annually [3].

Diarrheal illness may consist of acute watery diarrhea, invasive (bloody) diarrhea, or chronic diarrhea (persistent ≥14 days). This classification facilitates the approach to management of childhood diarrhea. Issues related to the etiology, clinical assessment, treatment, and prevention of acute watery diarrhea and invasive diarrhea in children in resource-limited countries are reviewed here. Issues related to chronic diarrhea in children are discussed separately. (See "Persistent diarrhea in children in resource-limited countries".)


Most cases of acute diarrhea in resource-limited countries are caused by infectious gastroenteritis. Less commonly, acute diarrhea can be a symptom of a systemic infection or an intra-abdominal surgical emergency.

Infectious gastroenteritis — The most common microbiological causes of infectious gastroenteritis differ by age group, geographical region, and type of diarrhea. In a large study of children five years or younger at seven sites in Asia and Africa, stool samples from 9439 children with moderate to severe diarrhea and from 13129 controls were tested for a panel of microorganisms [4]. Rotavirus, Cryptosporidium, Shigella, and enterotoxigenic Escherichia coli (ETEC) were important pathogens at all study sites, and most attributable cases of diarrhea were due to these organisms. Rotavirus was the most common pathogen among children under two years old, whereas Shigella was the most frequently isolated pathogen in children aged two to five. Cryptosporidium was the second most common pathogen among infants under one year old, but was infrequently detected in children older than two years. Aeromonas was a frequent pathogen in Pakistan and Bangladesh, and Campylobacter jejuni in Pakistan, Bangladesh, and India. Vibrio cholerae was an important cause of diarrhea at those three Asian sites as well as Mozambique. In a follow-up study that tested a subset of these specimens with a more sensitive panel of molecular tests (quantitative polymerase chain reaction), a higher proportion of diarrheal cases were associated with a detectable pathogen (89 versus 52 percent in the earlier study), and adenovirus 40/41 was identified as an additional common pathogen [5]. Although norovirus was not identified as a top cause of diarrhea in this facility-based study, in a separate multi-country community-based cohort of 199 children, norovirus was identified in approximately 25 percent of diarrheal episodes, but because of the prevalence of asymptomatic carriage and copathogens, it was estimated to cause approximately 5 percent of cases [6].

Acute diarrhea can also be classified as watery versus invasive, bloody diarrhea, and the microbiological etiologies differ by type, as discussed below (table 1) [7].


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jun 2017. | This topic last updated: Mar 16, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Bryce J, Boschi-Pinto C, Shibuya K, et al. WHO estimates of the causes of death in children. Lancet 2005; 365:1147.
  2. Boschi-Pinto C, Velebit L, Shibuya K. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ 2008; 86:710.
  3. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ 2003; 81:197.
  4. Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209.
  5. Liu J, Platts-Mills JA, Juma J, et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 2016; 388:1291.
  6. Rouhani S, Peñataro Yori P, Paredes Olortegui M, et al. Norovirus Infection and Acquired Immunity in 8 Countries: Results From the MAL-ED Study. Clin Infect Dis 2016; 62:1210.
  7. Huilan S, Zhen LG, Mathan MM, et al. Etiology of acute diarrhoea among children in developing countries: a multicentre study in five countries. Bull World Health Organ 1991; 69:549.
  8. Kotloff KL, Winickoff JP, Ivanoff B, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 1999; 77:651.
  9. Ryan ET, Dhar U, Khan WA, et al. Mortality, morbidity, and microbiology of endemic cholera among hospitalized patients in Dhaka, Bangladesh. Am J Trop Med Hyg 2000; 63:12.
  10. Heyman SN, Ginosar Y, Shapiro M, et al. Diarrheal epidemics among Rwandan refugees in 1994. Management and outcome in a field hospital. J Clin Gastroenterol 1997; 25:595.
  11. Ahmed T, Ali M, Ullah MM, et al. Mortality in severely malnourished children with diarrhoea and use of a standardised management protocol. Lancet 1999; 353:1919.
  12. Gorelick MH, Shaw KN, Murphy KO. Validity and reliability of clinical signs in the diagnosis of dehydration in children. Pediatrics 1997; 99:E6.
  13. Duggan C, Refat M, Hashem M, et al. How valid are clinical signs of dehydration in infants? J Pediatr Gastroenterol Nutr 1996; 22:56.
  14. Steiner MJ, DeWalt DA, Byerley JS. Is this child dehydrated? JAMA 2004; 291:2746.
  15. King CK, Glass R, Bresee JS, et al. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep 2003; 52:1.
  16. Steiner MJ, Nager AL, Wang VJ. Urine specific gravity and other urinary indices: inaccurate tests for dehydration. Pediatr Emerg Care 2007; 23:298.
  17. Guerrant RL, Oriá RB, Moore SR, et al. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 2008; 66:487.
  18. Petri WA Jr, Miller M, Binder HJ, et al. Enteric infections, diarrhea, and their impact on function and development. J Clin Invest 2008; 118:1277.
  19. Management of severe malnutrition: a manual for physicians and other senior health workers, WHO, Geneva 1999 www.who.int/nutrition/publications/malnutrition/en/index.html (Accessed on January 10, 2010).
  20. World Health Organization. The management of acute respiratory infections in children. In: Practical guidelines for outpatient care. World Health Organization, Geneva, 1995.
  21. Chisti MJ, Ahmed T, Faruque AS, Abdus Salam M. Clinical and laboratory features of radiologic pneumonia in severely malnourished infants attending an urban diarrhea treatment center in Bangladesh. Pediatr Infect Dis J 2010; 29:174.
  22. Chisti MJ, Tebruegge M, La Vincente S, et al. Pneumonia in severely malnourished children in developing countries - mortality risk, aetiology and validity of WHO clinical signs: a systematic review. Trop Med Int Health 2009; 14:1173.
  23. Chisti MJ, Huq S, Das SK, et al. Predictors of severe illness in children under age five with concomitant infection with pneumonia and diarrhea at a large hospital in Dhaka, Bangladesh. Southeast Asian J Trop Med Public Health 2008; 39:719.
  24. Bennish ML, Azad AK, Yousefzadeh D. Intestinal obstruction during shigellosis: incidence, clinical features, risk factors, and outcome. Gastroenterology 1991; 101:626.
  25. Taniuchi M, Sobuz SU, Begum S, et al. Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods. J Infect Dis 2013; 208:1794.
  26. World Health Organization. The treatment of diarrhoea, a manual for physicians and other senior health workers. -- 4th revision. WHO/FCH/CAH/05.1. Geneva: World Health Organization, 2005. http://whqlibdoc.who.int/publications/2005/9241593180.pdf (Accessed on January 08, 2010).
  27. Butler T, Islam M, Azad AK, et al. Causes of death in diarrhoeal diseases after rehydration therapy: an autopsy study of 140 patients in Bangladesh. Bull World Health Organ 1987; 65:317.
  28. Hartling L, Bellemare S, Wiebe N, et al. Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children. Cochrane Database Syst Rev 2006; :CD004390.
  29. Gregorio GV, Dans LF, Silvestre MA. Early versus Delayed Refeeding for Children with Acute Diarrhoea. Cochrane Database Syst Rev 2011; :CD007296.
  30. Lazzerini M, Ronfani L. Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev 2012; :CD005436.
  31. Lukacik M, Thomas RL, Aranda JV. A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 2008; 121:326.
  32. Bhandari N, Mazumder S, Taneja S, et al. Effectiveness of zinc supplementation plus oral rehydration salts compared with oral rehydration salts alone as a treatment for acute diarrhea in a primary care setting: a cluster randomized trial. Pediatrics 2008; 121:e1279.
  33. Li ST, Grossman DC, Cummings P. Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis. PLoS Med 2007; 4:e98.
  34. Christopher PR, David KV, John SM, Sankarapandian V. Antibiotic therapy for Shigella dysentery. Cochrane Database Syst Rev 2009; :CD006784.
  35. Bercu TE, Petri WA, Behm JW. Amebic colitis: new insights into pathogenesis and treatment. Curr Gastroenterol Rep 2007; 9:429.
  36. Bennish ML, Khan WA, Begum M, et al. Low risk of hemolytic uremic syndrome after early effective antimicrobial therapy for Shigella dysenteriae type 1 infection in Bangladesh. Clin Infect Dis 2006; 42:356.
  37. Meeting of the immunization Strategic Advisory Group of Experts, April 2009--conclusions and recommendations. Wkly Epidemiol Rec 2009; 84:220.