Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Antiseizure drugs: Mechanism of action, pharmacology, and adverse effects

Steven C Schachter, MD
Section Editor
Paul Garcia, MD
Deputy Editor
Janet L Wilterdink, MD


While sharing a common property of suppressing seizures, antiseizure drugs have many different pharmacologic profiles that are relevant when selecting and prescribing these agents in patients with epilepsy and other conditions. This includes pharmacokinetic properties, propensity for drug-drug interactions, and side effect profiles and toxicities.

Over the past several decades, the number of available antiseizure drugs has more than doubled. Unlike some of the earliest antiseizure drugs such as phenobarbital, phenytoin, and carbamazepine, many of the currently available antiseizure drugs have simple pharmacokinetics and more limited effects on liver metabolism. This translates into a generally lower rate of side effects, reduced need for serum monitoring, once or twice daily dosing for some, and fewer drug-drug interactions. Despite these advantages, however, there are few data to suggest significant differences in effectiveness among available antiseizure drugs.

Antiseizure drugs are typically grouped by their principal mode of action, although for many drugs, the precise mechanism of action is not known or multiple actions are suspected (table 1). To some degree, the cellular effects of antiseizure drugs are linked with the types of seizures against which they are most effective. An improved understanding of the molecular effects of existing antiseizure drugs as well as development of new antiseizure drugs that act against novel targets may allow for more rationale polytherapy in the future.

For detailed prescribing information, readers should refer to the individual drug information topics within UpToDate. Comprehensive information on drug-drug interactions can be determined using the drug interactions tool (Lexi-Interact online). This tool can be accessed from the UpToDate online search page or through the individual drug information topics in the section on Drug interactions. Complete information on U.S. Food and Drug Administration (FDA) labeling for each drug can be accessed using the FDA searchable database.

The pharmacology of antiseizure drugs is reviewed here. The use of antiseizure drugs in a treatment plan for patients with seizures is discussed separately. Risks of antiseizure drugs in pregnancy are also discussed separately. (See "Initial treatment of epilepsy in adults" and "Overview of the management of epilepsy in adults" and "Risks associated with epilepsy and pregnancy", section on 'Effect of antiseizure drugs on the fetus'.)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Aug 21, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/206030s000lbl.pdf (Accessed on November 01, 2016).
  2. Tolbert D, Cloyd J, Biton V, et al. Bioequivalence of oral and intravenous carbamazepine formulations in adult patients with epilepsy. Epilepsia 2015; 56:915.
  3. Lee D, Kalu U, Halford JJ, et al. Intravenous carbamazepine as short-term replacement therapy for oral carbamazepine in adults with epilepsy: Pooled tolerability results from two open-label trials. Epilepsia 2015; 56:906.
  4. Powell G, Saunders M, Rigby A, Marson AG. Immediate-release versus controlled-release carbamazepine in the treatment of epilepsy. Cochrane Database Syst Rev 2016; 12:CD007124.
  5. Hirsch LJ, Arif H, Nahm EA, et al. Cross-sensitivity of skin rashes with antiepileptic drug use. Neurology 2008; 71:1527.
  6. Herzog AG, Drislane FW, Schomer DL, et al. Differential effects of antiepileptic drugs on sexual function and hormones in men with epilepsy. Neurology 2005; 65:1016.
  7. Lossius MI, Taubøll E, Mowinckel P, et al. Reversible effects of antiepileptic drugs on reproductive endocrine function in men and women with epilepsy--a prospective randomized double-blind withdrawal study. Epilepsia 2007; 48:1875.
  8. Aggarwal A, Rastogi N, Mittal H, et al. Thyroid hormone levels in children receiving carbamazepine or valproate. Pediatr Neurol 2011; 45:159.
  9. Verrotti A, Laus M, Scardapane A, et al. Thyroid hormones in children with epilepsy during long-term administration of carbamazepine and valproate. Eur J Endocrinol 2009; 160:81.
  10. Sobotka JL, Alexander B, Cook BL. A review of carbamazepine's hematologic reactions and monitoring recommendations. DICP 1990; 24:1214.
  11. Rzany B, Correia O, Kelly JP, et al. Risk of Stevens-Johnson syndrome and toxic epidermal necrolysis during first weeks of antiepileptic therapy: a case-control study. Study Group of the International Case Control Study on Severe Cutaneous Adverse Reactions. Lancet 1999; 353:2190.
  12. Arif H, Buchsbaum R, Weintraub D, et al. Comparison and predictors of rash associated with 15 antiepileptic drugs. Neurology 2007; 68:1701.
  13. Man CB, Kwan P, Baum L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007; 48:1015.
  14. Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16:297.
  15. Wu XT, Hu FY, An DM, et al. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B*1502 allele among patients in central China. Epilepsy Behav 2010; 19:405.
  16. Khor AH, Lim KS, Tan CT, et al. HLA-B*15:02 association with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in an Indian population: a pooled-data analysis and meta-analysis. Epilepsia 2014; 55:e120.
  17. Leckband SG, Kelsoe JR, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Ther 2013; 94:324.
  18. Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 2011; 364:1126.
  19. Chen Z, Liew D, Kwan P. Real-world cost-effectiveness of pharmacogenetic screening for epilepsy treatment. Neurology 2016; 86:1086.
  20. Chen Z, Liew D, Kwan P. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology 2014; 83:2077.
  21. McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364:1134.
  22. Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011; 20:1034.
  23. Amstutz U, Ross CJ, Castro-Pastrana LI, et al. HLA-A 31:01 and HLA-B 15:02 as genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther 2013; 94:142.
  24. Amstutz U, Shear NH, Rieder MJ, et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia 2014; 55:496.
  25. Shi YW, Min FL, Zhou D, et al. HLA-A*24:02 as a common risk factor for antiepileptic drug-induced cutaneous adverse reactions. Neurology 2017; 88:2183.
  26. Yaari Y, Selzer ME, Pincus JH. Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 1986; 20:171.
  27. Caudle KE, Rettie AE, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther 2014; 96:542.
  28. Soryal I, Richens A. Bioavailability and dissolution of proprietary and generic formulations of phenytoin. J Neurol Neurosurg Psychiatry 1992; 55:688.
  29. Mikati M, Bassett N, Schachter S. Double-blind randomized study comparing brand-name and generic phenytoin monotherapy. Epilepsia 1992; 33:359.
  30. Burkhardt RT, Leppik IE, Blesi K, et al. Lower phenytoin serum levels in persons switched from brand to generic phenytoin. Neurology 2004; 63:1494.
  31. Locharernkul C, Loplumlert J, Limotai C, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 2008; 49:2087.
  32. Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009; 50:1.
  33. Arya R, Gulati S, Kabra M, et al. Folic acid supplementation prevents phenytoin-induced gingival overgrowth in children. Neurology 2011; 76:1338.
  34. Lee CY, Fu WM, Chen CC, et al. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008; 49:888.
  35. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2004; 62:1252.
  36. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2004; 62:1261.
  37. Biton V, Sackellares JC, Vuong A, et al. Double-blind, placebo-controlled study of lamotrigine in primary generalized tonic-clonic seizures. Neurology 2005; 65:1737.
  38. Biton V, Di Memmo J, Shukla R, et al. Adjunctive lamotrigine XR for primary generalized tonic-clonic seizures in a randomized, placebo-controlled study. Epilepsy Behav 2010; 19:352.
  39. Ramaratnam S, Panebianco M, Marson AG. Lamotrigine add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2016; :CD001909.
  40. Piña-Garza JE, Levisohn P, Gucuyener K, et al. Adjunctive lamotrigine for partial seizures in patients aged 1 to 24 months. Neurology 2008; 70:2099.
  41. Piña-Garza JE, Elterman RD, Ayala R, et al. Long-term tolerability and efficacy of lamotrigine in infants 1 to 24 months old. J Child Neurol 2008; 23:853.
  42. Naritoku DK, Warnock CR, Messenheimer JA, et al. Lamotrigine extended-release as adjunctive therapy for partial seizures. Neurology 2007; 69:1610.
  43. Tompson DJ, Ali I, Oliver-Willwong R, et al. Steady-state pharmacokinetics of lamotrigine when converting from a twice-daily immediate-release to a once-daily extended-release formulation in subjects with epilepsy (The COMPASS Study). Epilepsia 2008; 49:410.
  44. Weintraub D, Buchsbaum R, Resor SR Jr, Hirsch LJ. Effect of antiepileptic drug comedication on lamotrigine clearance. Arch Neurol 2005; 62:1432.
  45. Hirsch LJ, Weintraub D, Du Y, et al. Correlating lamotrigine serum concentrations with tolerability in patients with epilepsy. Neurology 2004; 63:1022.
  46. Reimers A, Helde G, Brodtkorb E. Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia 2005; 46:1414.
  47. Harden CL, Herzog AG, Nikolov BG, et al. Hormone replacement therapy in women with epilepsy: a randomized, double-blind, placebo-controlled study. Epilepsia 2006; 47:1447.
  48. O'Brien MD, Guillebaud J. Contraception for women with epilepsy. Epilepsia 2006; 47:1419.
  49. Contin M, Albani F, Ambrosetto G, et al. Variation in lamotrigine plasma concentrations with hormonal contraceptive monthly cycles in patients with epilepsy. Epilepsia 2006; 47:1573.
  50. Christensen J, Petrenaite V, Atterman J, et al. Oral contraceptives induce lamotrigine metabolism: evidence from a double-blind, placebo-controlled trial. Epilepsia 2007; 48:484.
  51. Herzog AG, Blum AS, Farina EL, et al. Valproate and lamotrigine level variation with menstrual cycle phase and oral contraceptive use. Neurology 2009; 72:911.
  52. Wegner I, Edelbroek PM, Bulk S, Lindhout D. Lamotrigine kinetics within the menstrual cycle, after menopause, and with oral contraceptives. Neurology 2009; 73:1388.
  53. WHO Medical eligibility criteria for contraceptive use. Fourth edition, 2009. http://whqlibdoc.who.int/publications/2010/9789241563888_eng.pdf. (Accessed on June 11, 2012).
  54. Tran TA, Leppik IE, Blesi K, et al. Lamotrigine clearance during pregnancy. Neurology 2002; 59:251.
  55. de Haan GJ, Edelbroek P, Segers J, et al. Gestation-induced changes in lamotrigine pharmacokinetics: a monotherapy study. Neurology 2004; 63:571.
  56. Tomson T, Luef G, Sabers A, et al. Valproate effects on kinetics of lamotrigine in pregnancy and treatment with oral contraceptives. Neurology 2006; 67:1297.
  57. Rambeck B, Specht U, Wolf P. Pharmacokinetic interactions of the new antiepileptic drugs. Clin Pharmacokinet 1996; 31:309.
  58. Arif H, Svoronos A, Resor SR Jr, et al. The effect of age and comedication on lamotrigine clearance, tolerability, and efficacy. Epilepsia 2011; 52:1905.
  59. Hirsch LJ, Weintraub DB, Buchsbaum R, et al. Predictors of Lamotrigine-associated rash. Epilepsia 2006; 47:318.
  60. Crespel A, Genton P, Berramdane M, et al. Lamotrigine associated with exacerbation or de novo myoclonus in idiopathic generalized epilepsies. Neurology 2005; 65:762.
  61. Magaudda A, Ferlazzo E, Nguyen VH, Genton P. Unverricht-Lundborg disease, a condition with self-limited progression: long-term follow-up of 20 patients. Epilepsia 2006; 47:860.
  62. Dinnerstein E, Jobst BC, Williamson PD. Lamotrigine intoxication provoking status epilepticus in an adult with localization-related epilepsy. Arch Neurol 2007; 64:1344.
  63. Simms KM, Kortepeter C, Avigan M. Lamotrigine and aseptic meningitis. Neurology 2012; 78:921.
  64. Koch MW, Polman SK. Oxcarbazepine versus carbamazepine monotherapy for partial onset seizures. Cochrane Database Syst Rev 2009; :CD006453.
  65. Nolan SJ, Muller M, Tudur Smith C, Marson AG. Oxcarbazepine versus phenytoin monotherapy for epilepsy. Cochrane Database Syst Rev 2013; :CD003615.
  66. Kim DW, Gu N, Jang IJ, et al. Efficacy, tolerability, and pharmacokinetics of oxcarbazepine oral loading in patients with epilepsy. Epilepsia 2012; 53:e9.
  67. Piña-Garza JE, Espinoza R, Nordli D, et al. Oxcarbazepine adjunctive therapy in infants and young children with partial seizures. Neurology 2005; 65:1370.
  68. Buggy Y, Layton D, Fogg C, Shakir SA. Safety profile of oxcarbazepine: results from a prescription-event monitoring study. Epilepsia 2010; 51:818.
  69. Cansu A, Serdaroğlu A, Camurdan O, et al. The evaluation of thyroid functions, thyroid antibodies, and thyroid volumes in children with epilepsy during short-term administration of oxcarbazepine and valproate. Epilepsia 2006; 47:1855.
  70. Vainionpää LK, Mikkonen K, Rättyä J, et al. Thyroid function in girls with epilepsy with carbamazepine, oxcarbazepine, or valproate monotherapy and after withdrawal of medication. Epilepsia 2004; 45:197.
  71. Hu FY, Wu XT, An DM, et al. Pilot association study of oxcarbazepine-induced mild cutaneous adverse reactions with HLA-B*1502 allele in Chinese Han population. Seizure 2011; 20:160.
  72. Hung SI, Chung WH, Liu ZS, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010; 11:349.
  73. Chen CB, Hsiao YH, Wu T, et al. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology 2017; 88:78.
  74. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021014s035,021285s030lbl.pdf.
  75. The FDA Safety Information and Adverse Event Reporting Program. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/default.htm.
  76. Dong X, Leppik IE, White J, Rarick J. Hyponatremia from oxcarbazepine and carbamazepine. Neurology 2005; 65:1976.
  77. Friis ML, Kristensen O, Boas J, et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 1993; 87:224.
  78. Glauser TA, Nigro M, Sachdeo R, et al. Adjunctive therapy with oxcarbazepine in children with partial seizures. The Oxcarbazepine Pediatric Study Group. Neurology 2000; 54:2237.
  79. Glauser TA. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy 2001; 21:904.
  80. Kutluay E, McCague K, D'Souza J, Beydoun A. Safety and tolerability of oxcarbazepine in elderly patients with epilepsy. Epilepsy Behav 2003; 4:175.
  81. Berghuis B, van der Palen J, de Haan GJ, et al. Carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy. Epilepsia 2017; 58:1227.
  82. Kim YS, Kim DW, Jung KH, et al. Frequency of and risk factors for oxcarbazepine-induced severe and symptomatic hyponatremia. Seizure 2014; 23:208.
  83. Schmidt D, Arroyo S, Baulac M, et al. Recommendations on the clinical use of oxcarbazepine in the treatment of epilepsy: a consensus view. Acta Neurol Scand 2001; 104:167.
  84. Guerrini R, Rosati A, Segieth J, et al. A randomized phase III trial of adjunctive zonisamide in pediatric patients with partial epilepsy. Epilepsia 2013; 54:1473.
  85. Carmichael K, Pulman J, Lakhan SE, et al. Zonisamide add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2013; :CD001416.
  86. Tosches WA, Tisdell J. Long-term efficacy and safety of monotherapy and adjunctive therapy with zonisamide. Epilepsy Behav 2006; 8:522.
  87. Kothare SV, Kaleyias J, Mostofi N, et al. Efficacy and safety of zonisamide monotherapy in a cohort of children with epilepsy. Pediatr Neurol 2006; 34:351.
  88. Stephen LJ, Kelly K, Wilson EA, et al. A prospective audit of adjunctive zonisamide in an everyday clinical setting. Epilepsy Behav 2010; 17:455.
  89. Baulac M, Brodie MJ, Patten A, et al. Efficacy and tolerability of zonisamide versus controlled-release carbamazepine for newly diagnosed partial epilepsy: a phase 3, randomised, double-blind, non-inferiority trial. Lancet Neurol 2012; 11:579.
  90. Sills G, Brodie M. Pharmacokinetics and drug interactions with zonisamide. Epilepsia 2007; 48:435.
  91. Park SP, Hwang YH, Lee HW, et al. Long-term cognitive and mood effects of zonisamide monotherapy in epilepsy patients. Epilepsy Behav 2008; 12:102.
  92. White JR, Walczak TS, Marino SE, et al. Zonisamide discontinuation due to psychiatric and cognitive adverse events: a case-control study. Neurology 2010; 75:513.
  93. LaRoche SM, Helmers SL. The new antiepileptic drugs: scientific review. JAMA 2004; 291:605.
  94. Perucca E, Yasothan U, Clincke G, Kirkpatrick P. Lacosamide. Nat Rev Drug Discov 2008; 7:973.
  95. Holtkamp D, Opitz T, Niespodziany I, et al. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na(+) channel inactivation. Epilepsia 2017; 58:27.
  96. Halász P, Kälviäinen R, Mazurkiewicz-Beldzińska M, et al. Adjunctive lacosamide for partial-onset seizures: Efficacy and safety results from a randomized controlled trial. Epilepsia 2009; 50:443.
  97. Chung S, Sperling MR, Biton V, et al. Lacosamide as adjunctive therapy for partial-onset seizures: a randomized controlled trial. Epilepsia 2010; 51:958.
  98. Ben-Menachem E, Biton V, Jatuzis D, et al. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia 2007; 48:1308.
  99. Weston J, Shukralla A, McKay AJ, Marson AG. Lacosamide add-on therapy for partial epilepsy. Cochrane Database Syst Rev 2015; :CD008841.
  100. Husain A, Chung S, Faught E, et al. Long-term safety and efficacy in patients with uncontrolled partial-onset seizures treated with adjunctive lacosamide: results from a Phase III open-label extension trial. Epilepsia 2012; 53:521.
  101. Guilhoto LM, Loddenkemper T, Gooty VD, et al. Experience with lacosamide in a series of children with drug-resistant focal epilepsy. Pediatr Neurol 2011; 44:414.
  102. Rastogi RG, Ng YT. Lacosamide in refractory mixed pediatric epilepsy: a prospective add-on study. J Child Neurol 2012; 27:492.
  103. Yorns WR Jr, Khurana DS, Carvalho KS, et al. Efficacy of lacosamide as adjunctive therapy in children with refractory epilepsy. J Child Neurol 2014; 29:23.
  104. Pasha I, Kamate M, Didagi SK. Efficacy and tolerability of lacosamide as an adjunctive therapy in children with refractory partial epilepsy. Pediatr Neurol 2014; 51:509.
  105. Wechsler RT, Li G, French J, et al. Conversion to lacosamide monotherapy in the treatment of focal epilepsy: results from a historical-controlled, multicenter, double-blind study. Epilepsia 2014; 55:1088.
  106. Zaccara G, Perucca P, Loiacono G, et al. The adverse event profile of lacosamide: a systematic review and meta-analysis of randomized controlled trials. Epilepsia 2013; 54:66.
  107. Novy J, Patsalos PN, Sander JW, Sisodiya SM. Lacosamide neurotoxicity associated with concomitant use of sodium channel-blocking antiepileptic drugs: a pharmacodynamic interaction? Epilepsy Behav 2011; 20:20.
  108. Cuzzola A, Ferlazzo E, Italiano D, et al. Does lacosamide aggravate Lennox-Gastaut syndrome? Report on three consecutive cases. Epilepsy Behav 2010; 19:650.
  109. Nizam A, Mylavarapu K, Thomas D, et al. Lacosamide-induced second-degree atrioventricular block in a patient with partial epilepsy. Epilepsia 2011; 52:e153.
  110. Degiorgio CM. Atrial flutter/atrial fibrillation associated with lacosamide for partial seizures. Epilepsy Behav 2010; 18:322.
  111. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022255s026s027,022254s019s020,022255s012s013lbl.pdf (Accessed on September 09, 2014).
  112. Glauser T, Kluger G, Sachdeo R, et al. Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Neurology 2008; 70:1950.
  113. Kluger G, Kurlemann G, Haberlandt E, et al. Effectiveness and tolerability of rufinamide in children and adults with refractory epilepsy: first European experience. Epilepsy Behav 2009; 14:491.
  114. Kluger G, Haberlandt E, Kurlemann G, et al. First European long-term experience with the orphan drug rufinamide in childhood-onset refractory epilepsy. Epilepsy Behav 2010; 17:546.
  115. Thome-Souza S, Kadish NE, Ramgopal S, et al. Safety and retention rate of rufinamide in 300 patients: a single pediatric epilepsy center experience. Epilepsia 2014; 55:1235.
  116. Verrotti A, Loiacono G, Ballone E, et al. Efficacy of rufinamide in drug-resistant epilepsy: a meta-analysis. Pediatr Neurol 2011; 44:347.
  117. Brodie MJ, Rosenfeld WE, Vazquez B, et al. Rufinamide for the adjunctive treatment of partial seizures in adults and adolescents: a randomized placebo-controlled trial. Epilepsia 2009; 50:1899.
  118. Biton V, Krauss G, Vasquez-Santana B, et al. A randomized, double-blind, placebo-controlled, parallel-group study of rufinamide as adjunctive therapy for refractory partial-onset seizures. Epilepsia 2011; 52:234.
  119. Perucca E, Cloyd J, Critchley D, Fuseau E. Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia 2008; 49:1123.
  120. Wheless JW, Conry J, Krauss G, et al. Safety and tolerability of rufinamide in children with epilepsy: a pooled analysis of 7 clinical studies. J Child Neurol 2009; 24:1520.
  121. Benes J, Parada A, Figueiredo AA, et al. Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives. J Med Chem 1999; 42:2582.
  122. Chang XC, Yuan H, Wang Y, et al. Eslicarbazepine acetate add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2011; :CD008907.
  123. Sperling MR, Abou-Khalil B, Harvey J, et al. Eslicarbazepine acetate as adjunctive therapy in patients with uncontrolled partial-onset seizures: Results of a phase III, double-blind, randomized, placebo-controlled trial. Epilepsia 2015; 56:244.
  124. Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)--part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet 2013; 52:927.
  125. Food and Drug Administration (FDA). FDA labelling information. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.
  126. Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)--Part 2: pharmacokinetic and pharmacodynamic interactions between AEDs and drugs used to treat non-epilepsy disorders. Clin Pharmacokinet 2013; 52:1045.
  127. Vaz-da-Silva M, Almeida L, Falcão A, et al. Effect of eslicarbazepine acetate on the steady-state pharmacokinetics and pharmacodynamics of warfarin in healthy subjects during a three-stage, open-label, multiple-dose, single-period study. Clin Ther 2010; 32:179.
  128. Coulter DA, Huguenard JR, Prince DA. Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 1989; 98:74.
  129. Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25:582.
  130. Glauser TA, Cnaan A, Shinnar S, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 2010; 362:790.
  131. Pulman J, Hutton JL, Marson AG. Tiagabine add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2014; :CD001908.
  132. Braestrup C, Nielsen EB, Sonnewald U, et al. (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem 1990; 54:639.
  133. Pulman J, Marson AG, Hutton JL. Tiagabine add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2012; :CD001908.
  134. Aikiä M, Jutila L, Salmenperä T, et al. Comparison of the cognitive effects of tiagabine and carbamazepine as monotherapy in newly diagnosed adult patients with partial epilepsy: pooled analysis of two long-term, randomized, follow-up studies. Epilepsia 2006; 47:1121.
  135. Jette N, Cappell J, VanPassel L, Akman CI. Tiagabine-induced nonconvulsive status epilepticus in an adolescent without epilepsy. Neurology 2006; 67:1514.
  136. Flowers CM, Racoosin JA, Kortepeter C. Seizure activity and off-label use of tiagabine. N Engl J Med 2006; 354:773.
  137. Shinnar S, Berg AT, Treiman DM, et al. Status epilepticus and tiagabine therapy: review of safety data and epidemiologic comparisons. Epilepsia 2001; 42:372.
  138. Koepp MJ, Edwards M, Collins J, et al. Status epilepticus and tiagabine therapy revisited. Epilepsia 2005; 46:1625.
  139. Hemming K, Maguire MJ, Hutton JL, Marson AG. Vigabatrin for refractory partial epilepsy. Cochrane Database Syst Rev 2013; :CD007302.
  140. Tanganelli P, Regesta G. Vigabatrin vs. carbamazepine monotherapy in newly diagnosed focal epilepsy: a randomized response conditional cross-over study. Epilepsy Res 1996; 25:257.
  141. Chadwick D. Safety and efficacy of vigabatrin and carbamazepine in newly diagnosed epilepsy: a multicentre randomised double-blind study. Vigabatrin European Monotherapy Study Group. Lancet 1999; 354:13.
  142. Kälviäinen R, Aikiä M, Saukkonen AM, et al. Vigabatrin vs carbamazepine monotherapy in patients with newly diagnosed epilepsy. A randomized, controlled study. Arch Neurol 1995; 52:989.
  143. Vigabatrin (Sabril) for epilepsy. Med Lett Drugs Ther 2010; 52:14.
  144. Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ 1997; 314:180.
  145. Kälviäinen R, Nousiainen I, Mäntyjärvi M, et al. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field defects. Neurology 1999; 53:922.
  146. Miller NR, Johnson MA, Paul SR, et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 1999; 53:2082.
  147. Daneshvar H, Racette L, Coupland SG, et al. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 1999; 106:1792.
  148. Kälviäinen R, Nousiainen I. Visual field defects with vigabatrin: epidemiology and therapeutic implications. CNS Drugs 2001; 15:217.
  149. Maguire MJ, Hemming K, Wild JM, et al. Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia 2010; 51:2423.
  150. Gaily E, Jonsson H, Lappi M. Visual fields at school-age in children treated with vigabatrin in infancy. Epilepsia 2009; 50:206.
  151. Riikonen R, Rener-Primec Z, Carmant L, et al. Does vigabatrin treatment for infantile spasms cause visual field defects? An international multicentre study. Dev Med Child Neurol 2015; 57:60.
  152. Wild JM, Ahn HS, Baulac M, et al. Vigabatrin and epilepsy: lessons learned. Epilepsia 2007; 48:1318.
  153. Conway M, Cubbidge RP, Hosking SL. Visual field severity indices demonstrate dose-dependent visual loss from vigabatrin therapy. Epilepsia 2008; 49:108.
  154. Willmore LJ, Abelson MB, Ben-Menachem E, et al. Vigabatrin: 2008 update. Epilepsia 2009; 50:163.
  155. Duboc A, Hanoteau N, Simonutti M, et al. Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 2004; 55:695.
  156. Hardus P, Verduin WM, Engelsman M, et al. Visual field loss associated with vigabatrin: quantification and relation to dosage. Epilepsia 2001; 42:262.
  157. Clayton LM, Dévilé M, Punte T, et al. Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 2011; 69:845.
  158. Jammoul F, Wang Q, Nabbout R, et al. Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol 2009; 65:98.
  159. Pearl PL, Vezina LG, Saneto RP, et al. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 2009; 50:184.
  160. Wheless JW, Carmant L, Bebin M, et al. Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 2009; 50:195.
  161. Dracopoulos A, Widjaja E, Raybaud C, et al. Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia 2010; 51:1297.
  162. Klehm J, Thome-Souza S, Sánchez Fernández I, et al. Clobazam: effect on frequency of seizures and safety profile in different subgroups of children with epilepsy. Pediatr Neurol 2014; 51:60.
  163. Conry JA, Ng YT, Paolicchi JM, et al. Clobazam in the treatment of Lennox-Gastaut syndrome. Epilepsia 2009; 50:1158.
  164. Ng YT, Conry JA, Drummond R, et al. Randomized, phase III study results of clobazam in Lennox-Gastaut syndrome. Neurology 2011; 77:1473.
  165. Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 2011; 11:56.
  166. Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 2010; 92:89.
  167. French JA, Krauss GL, Biton V, et al. Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology 2012; 79:589.
  168. Krauss GL, Serratosa JM, Villanueva V, et al. Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 2012; 78:1408.
  169. French JA, Krauss GL, Steinhoff BJ, et al. Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia 2013; 54:117.
  170. Steinhoff BJ, Ben-Menachem E, Ryvlin P, et al. Efficacy and safety of adjunctive perampanel for the treatment of refractory partial seizures: a pooled analysis of three phase III studies. Epilepsia 2013; 54:1481.
  171. Gidal BE, Laurenza A, Hussein Z, et al. Perampanel efficacy and tolerability with enzyme-inducing AEDs in patients with epilepsy. Neurology 2015; 84:1972.
  172. French JA, Krauss GL, Wechsler RT, et al. Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy A randomized trial. Neurology 2015; 85:950.
  173. Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist. Epilepsia 2015; 56:12.
  174. Krauss GL, Perucca E, Ben-Menachem E, et al. Long-term safety of perampanel and seizure outcomes in refractory partial-onset seizures and secondarily generalized seizures: results from phase III extension study 307. Epilepsia 2014; 55:1058.
  175. Leppik IE, Yang H, Williams B, et al. Analysis of falls in patients with epilepsy enrolled in the perampanel phase III randomized double-blind studies. Epilepsia 2017; 58:51.
  176. Ettinger AB, LoPresti A, Yang H, et al. Psychiatric and behavioral adverse events in randomized clinical studies of the noncompetitive AMPA receptor antagonist perampanel. Epilepsia 2015; 56:1252.
  177. Lagae L, Villanueva V, Meador KJ, et al. Adjunctive perampanel in adolescents with inadequately controlled partial-onset seizures: A randomized study evaluating behavior, efficacy, and safety. Epilepsia 2016; 57:1120.
  178. Datta AN, Xu Q, Sachedina S, et al. Clinical Experience With Perampanel for Refractory Pediatric Epilepsy in One Canadian Center. J Child Neurol 2017; 32:834.
  179. http://www.deadiversion.usdoj.gov/fed_regs/rules/2013/fr1202.htm.
  180. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237:1001.
  181. Gram L. Experimental studies and controlled clinical testing of valproate and vigabatrin. Acta Neurol Scand 1988; 78:241.
  182. Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 1981; 30:1364.
  183. Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002; 16:669.
  184. Drozda K, Müller DJ, Bishop JR. Pharmacogenomic testing for neuropsychiatric drugs: current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy 2014; 34:166.
  185. Sinha S, Naritoku DK. Intravenous valproate is well tolerated in unstable patients with status epilepticus. Neurology 2000; 55:722.
  186. Ramsay RE, Cantrell D, Collins SD, et al. Safety and tolerance of rapidly infused Depacon. A randomized trial in subjects with epilepsy. Epilepsy Res 2003; 52:189.
  187. Wheless JW, Vazquez BR, Kanner AM, et al. Rapid infusion with valproate sodium is well tolerated in patients with epilepsy. Neurology 2004; 63:1507.
  188. Limdi NA, Shimpi AV, Faught E, et al. Efficacy of rapid IV administration of valproic acid for status epilepticus. Neurology 2005; 64:353.
  189. Limdi NA, Knowlton RK, Cofield SS, et al. Safety of rapid intravenous loading of valproate. Epilepsia 2007; 48:478.
  190. Rai A, Aggarwal A, Mittal H, Sharma S. Comparative efficacy and safety of intravenous valproate and phenytoin in children. Pediatr Neurol 2011; 45:300.
  191. Biton V, Mirza W, Montouris G, et al. Weight change associated with valproate and lamotrigine monotherapy in patients with epilepsy. Neurology 2001; 56:172.
  192. Kim JY, Lee HW. Metabolic and hormonal disturbances in women with epilepsy on antiepileptic drug monotherapy. Epilepsia 2007; 48:1366.
  193. Abaci A, Saygi M, Yis U, et al. Metabolic alterations during valproic acid treatment: a prospective study. Pediatr Neurol 2009; 41:435.
  194. Verrotti A, Manco R, Agostinelli S, et al. The metabolic syndrome in overweight epileptic patients treated with valproic acid. Epilepsia 2010; 51:268.
  195. Gerstner T, Teich M, Bell N, et al. Valproate-associated coagulopathies are frequent and variable in children. Epilepsia 2006; 47:1136.
  196. Nasreddine W, Beydoun A. Valproate-induced thrombocytopenia: a prospective monotherapy study. Epilepsia 2008; 49:438.
  197. Castro-Gago M, Novo-Rodríguez MI, Gómez-Lado C, et al. Evolution of subclinical hypothyroidism in children treated with antiepileptic drugs. Pediatr Neurol 2007; 37:426.
  198. Sahu JK, Gulati S, Kabra M, et al. Evaluation of subclinical hypothyroidism in ambulatory children with controlled epilepsy on valproate monotherapy. J Child Neurol 2012; 27:594.
  199. Sahota P, Prabhakar S, Kharbanda PS, et al. Seizure type, antiepileptic drugs, and reproductive endocrine dysfunction in Indian women with epilepsy: a cross-sectional study. Epilepsia 2008; 49:2069.
  200. Verrotti A, D'Egidio C, Mohn A, et al. Antiepileptic drugs, sex hormones, and PCOS. Epilepsia 2011; 52:199.
  201. Endo A, Fujita Y, Fuchigami T, et al. Fanconi syndrome caused by valproic acid. Pediatr Neurol 2010; 42:287.
  202. Garcia M, Huppertz HJ, Ziyeh S, et al. Valproate-induced metabolic changes in patients with epilepsy: assessment with H-MRS. Epilepsia 2009; 50:486.
  203. Tseng YL, Huang CR, Lin CH, et al. Risk factors of hyperammonemia in patients with epilepsy under valproic acid therapy. Medicine (Baltimore) 2014; 93:e66.
  204. Yamamoto Y, Takahashi Y, Imai K, et al. Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 2013; 54:983.
  205. Dreifuss FE, Santilli N, Langer DH, et al. Valproic acid hepatic fatalities: a retrospective review. Neurology 1987; 37:379.
  206. Koenig SA, Buesing D, Longin E, et al. Valproic acid-induced hepatopathy: nine new fatalities in Germany from 1994 to 2003. Epilepsia 2006; 47:2027.
  207. Gerstner T, Büsing D, Bell N, et al. Valproic acid-induced pancreatitis: 16 new cases and a review of the literature. J Gastroenterol 2007; 42:39.
  208. Werlin SL, Fish DL. The spectrum of valproic acid-associated pancreatitis. Pediatrics 2006; 118:1660.
  209. Ristić AJ, Vojvodić N, Janković S, et al. The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia 2006; 47:2183.
  210. Armon C, Shin C, Miller P, et al. Reversible parkinsonism and cognitive impairment with chronic valproate use. Neurology 1996; 47:626.
  211. Easterford K, Clough P, Kellett M, et al. Reversible parkinsonism with normal beta-CIT-SPECT in patients exposed to sodium valproate. Neurology 2004; 62:1435.
  212. Masmoudi K, Gras-Champel V, Masson H, Andréjak M. Parkinsonism and/or cognitive impairment with valproic acid therapy: a report of ten cases. Pharmacopsychiatry 2006; 39:9.
  213. Jamora D, Lim SH, Pan A, et al. Valproate-induced Parkinsonism in epilepsy patients. Mov Disord 2007; 22:130.
  214. Schmitt B, Martin F, Critelli H, et al. Effects of valproic acid on sleep in children with epilepsy. Epilepsia 2009; 50:1860.
  215. Rho JM, Donevan SD, Rogawski MA. Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and gamma-aminobutyric acidA receptors. Ann Neurol 1994; 35:229.
  216. Bourgeois BF. Felbamate in the treatment of partial-onset seizures. Epilepsia 1994; 35 Suppl 5:S58.
  217. Leppik IE. Felbamate: a new drug for the treatment of patients with epilepsy. Neurology Forum 1992; 3:2.
  218. Shi LL, Dong J, Ni H, et al. Felbamate as an add-on therapy for refractory partial epilepsy. Cochrane Database Syst Rev 2017; 7:CD008295.
  219. Egnell AC, Houston B, Boyer S. In vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine. J Pharmacol Exp Ther 2003; 305:1251.
  220. Wagner ML, Graves NM, Leppik IE, et al. The effect of felbamate on valproic acid disposition. Clin Pharmacol Ther 1994; 56:494.
  221. Sachdeo R, Wagner ML, Sachdeo S, et al. Coadministration of phenytoin and felbamate: evidence of additional phenytoin dose-reduction requirements based on pharmacokinetics and tolerability with increasing doses of felbamate. Epilepsia 1999; 40:1122.
  222. Troupin AS, Montouris G, Hussein G. Felbamate: therapeutic range and other kinetic information. J Epilepsy 1997; 10:26.
  223. Pulman J, Jette N, Dykeman J, et al. Topiramate add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2014; :CD001417.
  224. Glauser TA, Dlugos DJ, Dodson WE, et al. Topiramate monotherapy in newly diagnosed epilepsy in children and adolescents. J Child Neurol 2007; 22:693.
  225. Novotny E, Renfroe B, Yardi N, et al. Randomized trial of adjunctive topiramate therapy in infants with refractory partial seizures. Neurology 2010; 74:714.
  226. Ben-Menachem E. Clinical efficacy of topiramate as add-on therapy in refractory partial epilepsy: the European experience. Epilepsia 1997; 38 Suppl 1:S28.
  227. Ramsay E, Faught E, Krumholz A, et al. Efficacy, tolerability, and safety of rapid initiation of topiramate versus phenytoin in patients with new-onset epilepsy: a randomized double-blind clinical trial. Epilepsia 2010; 51:1970.
  228. Cho YJ, Heo K, Kim WJ, et al. Long-term efficacy and tolerability of topiramate as add-on therapy in refractory partial epilepsy: an observational study. Epilepsia 2009; 50:1910.
  229. Majkowski J, Neto W, Wapenaar R, Van Oene J. Time course of adverse events in patients with localization-related epilepsy receiving topiramate added to carbamazepine. Epilepsia 2005; 46:648.
  230. Ben-Menachem E, Axelsen M, Johanson EH, et al. Predictors of weight loss in adults with topiramate-treated epilepsy. Obes Res 2003; 11:556.
  231. El Yaman SH, Mroueh SM, Sinno DD, Mikati MA. Long-term patterns of weight changes during topiramate therapy: an observational study. Neurology 2007; 69:310.
  232. Cirulli ET, Urban TJ, Marino SE, et al. Genetic and environmental correlates of topiramate-induced cognitive impairment. Epilepsia 2012; 53:e5.
  233. Salinsky MC, Storzbach D, Spencer DC, et al. Effects of topiramate and gabapentin on cognitive abilities in healthy volunteers. Neurology 2005; 64:792.
  234. Meador KJ, Loring DW, Vahle VJ, et al. Cognitive and behavioral effects of lamotrigine and topiramate in healthy volunteers. Neurology 2005; 64:2108.
  235. Smith ME, Gevins A, McEvoy LK, et al. Distinct cognitive neurophysiologic profiles for lamotrigine and topiramate. Epilepsia 2006; 47:695.
  236. Blum D, Meador K, Biton V, et al. Cognitive effects of lamotrigine compared with topiramate in patients with epilepsy. Neurology 2006; 67:400.
  237. Aarsen FK, van den Akker EL, Drop SL, Catsman-Berrevoets CE. Effect of topiramate on cognition in obese children. Neurology 2006; 67:1307.
  238. Loring DW, Williamson DJ, Meador KJ, et al. Topiramate dose effects on cognition: a randomized double-blind study. Neurology 2011; 76:131.
  239. Kang HC, Eun BL, Lee CW, et al. The effects on cognitive function and behavioral problems of topiramate compared to carbamazepine as monotherapy for children with benign rolandic epilepsy. Epilepsia 2007; 48:1716.
  240. Kim SJ, Kim MY, Choi YM, Song MK. Effects of topiramate on language functions in newly diagnosed pediatric epileptic patients. Pediatr Neurol 2014; 51:324.
  241. Coppola G, Verrotti A, Resicato G, et al. Topiramate in children and adolescents with epilepsy and mental retardation: a prospective study on behavior and cognitive effects. Epilepsy Behav 2008; 12:253.
  242. Chadwick D, Privitera M. How skeptical should we be about industry-sponsored studies? Neurology 2006; 67:378.
  243. Sankar R, Ramsay E, McKay A, et al. A multicenter, outpatient, open-label study to evaluate the dosing, effectiveness, and safety of topiramate as monotherapy in the treatment of epilepsy in clinical practice. Epilepsy Behav 2009; 15:506.
  244. Mula M, Hesdorffer DC, Trimble M, Sander JW. The role of titration schedule of topiramate for the development of depression in patients with epilepsy. Epilepsia 2009; 50:1072.
  245. Glauser TA. Topiramate. Epilepsia 1999; 40 Suppl 5:S71.
  246. Bonanni E, Galli R, Maestri M, et al. Daytime sleepiness in epilepsy patients receiving topiramate monotherapy. Epilepsia 2004; 45:333.
  247. de Carolis P, Magnifico F, Pierangeli G, et al. Transient hypohidrosis induced by topiramate. Epilepsia 2003; 44:974.
  248. Cerminara C, Seri S, Bombardieri R, et al. Hypohidrosis during topiramate treatment: a rare and reversible side effect. Pediatr Neurol 2006; 34:392.
  249. Stavskaia SS, Krivets IA, Nastoiashchaia NI. [Reorganization of the strain's cellular lipids--degradation of anionic surfactants during "detergent" stress]. Mikrobiol Z 2001; 63:22.
  250. Etminan M, Maberley D, Mikelberg FS. Use of topiramate and risk of glaucoma: a case-control study. Am J Ophthalmol 2012; 153:827.
  251. Beyenburg S, Weyland C, Reuber M. Presumed topiramate-induced maculopathy. Epilepsy Behav 2009; 14:556.
  252. Mukhin NA, Kozlovskaia LV, Bobkova IN, et al. [The key role of tubulointerstitium remodeling in progression of chronic renal diseases]. Arkh Patol 2004; 66:16.
  253. Takeoka M, Holmes GL, Thiele E, et al. Topiramate and metabolic acidosis in pediatric epilepsy. Epilepsia 2001; 42:387.
  254. Jovanović M, Sokić D, Grabnar I, et al. Effect of Long-term Topiramate Therapy on Serum Bicarbonate and Potassium Levels in Adult Epileptic Patients. Ann Pharmacother 2014; 48:992.
  255. Kuo RL, Moran ME, Kim DH, et al. Topiramate-induced nephrolithiasis. J Endourol 2002; 16:229.
  256. Ahlstrand C, Tiselius HG. Urine composition and stone formation during treatment with acetazolamide. Scand J Urol Nephrol 1987; 21:225.
  257. Tawil R, Moxley RT 3rd, Griggs RC. Acetazolamide-induced nephrolithiasis: implications for treatment of neuromuscular disorders. Neurology 1993; 43:1105.
  258. Wroe S. Zonisamide and renal calculi in patients with epilepsy: how big an issue? Curr Med Res Opin 2007; 23:1765.
  259. Mahmoud AA, Rizk T, El-Bakri NK, et al. Incidence of kidney stones with topiramate treatment in pediatric patients. Epilepsia 2011; 52:1890.
  260. van Hooft JA, Dougherty JJ, Endeman D, et al. Gabapentin inhibits presynaptic Ca(2+) influx and synaptic transmission in rat hippocampus and neocortex. Eur J Pharmacol 2002; 449:221.
  261. Bryans JS, Davies N, Gee NS, et al. Identification of novel ligands for the gabapentin binding site on the alpha2delta subunit of a calcium channel and their evaluation as anticonvulsant agents. J Med Chem 1998; 41:1838.
  262. Belliotti TR, Capiris T, Ekhato IV, et al. Structure-activity relationships of pregabalin and analogues that target the alpha(2)-delta protein. J Med Chem 2005; 48:2294.
  263. Al-Bachari S, Pulman J, Hutton JL, Marson AG. Gabapentin add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2013; :CD001415.
  264. Fisher RS, Sachdeo RC, Pellock J, et al. Rapid initiation of gabapentin: a randomized, controlled trial. Neurology 2001; 56:743.
  265. Zand L, McKian KP, Qian Q. Gabapentin toxicity in patients with chronic kidney disease: a preventable cause of morbidity. Am J Med 2010; 123:367.
  266. Gee NS, Brown JP, Dissanayake VU, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 1996; 271:5768.
  267. Fink K, Dooley DJ, Meder WP, et al. Inhibition of neuronal Ca(2+) influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002; 42:229.
  268. Lauria-Horner BA, Pohl RB. Pregabalin: a new anxiolytic. Expert Opin Investig Drugs 2003; 12:663.
  269. Brodie MJ, Wilson EA, Wesche DL, et al. Pregabalin drug interaction studies: lack of effect on the pharmacokinetics of carbamazepine, phenytoin, lamotrigine, and valproate in patients with partial epilepsy. Epilepsia 2005; 46:1407.
  270. Bockbrader HN, Burger P, Knapp L, Corrigan BW. Population pharmacokinetics of pregabalin in healthy subjects and patients with chronic pain or partial seizures. Epilepsia 2011; 52:248.
  271. Bockbrader HN, Burger P, Knapp L. Pregabalin effect on steady-state pharmacokinetics of carbamazepine, lamotrigine, phenobarbital, phenytoin, topiramate, valproate, and tiagabine. Epilepsia 2011; 52:405.
  272. Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 2004; 45 Suppl 6:13.
  273. Feng MR, Turluck D, Burleigh J, et al. Brain microdialysis and PK/PD correlation of pregabalin in rats. Eur J Drug Metab Pharmacokinet 2001; 26:123.
  274. Arroyo S, Anhut H, Kugler AR, et al. Pregabalin add-on treatment: a randomized, double-blind, placebo-controlled, dose-response study in adults with partial seizures. Epilepsia 2004; 45:20.
  275. Beydoun A, Uthman BM, Kugler AR, et al. Safety and efficacy of two pregabalin regimens for add-on treatment of partial epilepsy. Neurology 2005; 64:475.
  276. Lozsadi D, Hemming K, Marson AG. Pregabalin add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev 2008; :CD005612.
  277. Lee BI, Yi S, Hong SB, et al. Pregabalin add-on therapy using a flexible, optimized dose schedule in refractory partial epilepsies: a double-blind, randomized, placebo-controlled, multicenter trial. Epilepsia 2009; 50:464.
  278. Uthman BM, Bazil CW, Beydoun A, et al. Long-term add-on pregabalin treatment in patients with partial-onset epilepsy: pooled analysis of open-label clinical trials. Epilepsia 2010; 51:968.
  279. Jan MM, Zuberi SA, Alsaihati BA. Pregabalin: preliminary experience in intractable childhood epilepsy. Pediatr Neurol 2009; 40:347.
  280. Kwan P, Brodie MJ, Kälviäinen R, et al. Efficacy and safety of pregabalin versus lamotrigine in patients with newly diagnosed partial seizures: a phase 3, double-blind, randomised, parallel-group trial. Lancet Neurol 2011; 10:881.
  281. Warner G, Figgitt DP. Pregabalin: as adjunctive treatment of partial seizures. CNS Drugs 2005; 19:265.
  282. Salinsky M, Storzbach D, Munoz S. Cognitive effects of pregabalin in healthy volunteers: a double-blind, placebo-controlled trial. Neurology 2010; 74:755.
  283. Zaccara G, Gangemi P, Perucca P, Specchio L. The adverse event profile of pregabalin: a systematic review and meta-analysis of randomized controlled trials. Epilepsia 2011; 52:826.
  284. Huppertz HJ, Feuerstein TJ, Schulze-Bonhage A. Myoclonus in epilepsy patients with anticonvulsive add-on therapy with pregabalin. Epilepsia 2001; 42:790.
  285. Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 2004; 101:9861.
  286. Crowder KM, Gunther JM, Jones TA, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 1999; 96:15268.
  287. Custer KL, Austin NS, Sullivan JM, Bajjalieh SM. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 2006; 26:1303.
  288. Doelken MT, Hammen T, Bogner W, et al. Alterations of intracerebral γ-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 2010; 51:1477.
  289. Meehan AL, Yang X, Yuan LL, Rothman SM. Levetiracetam has an activity-dependent effect on inhibitory transmission. Epilepsia 2012; 53:469.
  290. Berkovic SF, Knowlton RC, Leroy RF, et al. Placebo-controlled study of levetiracetam in idiopathic generalized epilepsy. Neurology 2007; 69:1751.
  291. Noachtar S, Andermann E, Meyvisch P, et al. Levetiracetam for the treatment of idiopathic generalized epilepsy with myoclonic seizures. Neurology 2008; 70:607.
  292. Delanty N, Jones J, Tonner F. Adjunctive levetiracetam in children, adolescents, and adults with primary generalized seizures: open-label, noncomparative, multicenter, long-term follow-up study. Epilepsia 2012; 53:111.
  293. Mbizvo GK, Dixon P, Hutton JL, Marson AG. Levetiracetam add-on for drug-resistant focal epilepsy: an updated Cochrane Review. Cochrane Database Syst Rev 2012; :CD001901.
  294. Piña-Garza JE, Nordli DR Jr, Rating D, et al. Adjunctive levetiracetam in infants and young children with refractory partial-onset seizures. Epilepsia 2009; 50:1141.
  295. Perry MS, Benatar M. Efficacy and tolerability of levetiracetam in children younger than 4 years: a retrospective review. Epilepsia 2007; 48:1123.
  296. Goraya JS, Khurana DS, Valencia I, et al. Intravenous levetiracetam in children with epilepsy. Pediatr Neurol 2008; 38:177.
  297. Krief P, Li Kan, Maytal J. Efficacy of levetiracetam in children with epilepsy younger than 2 years of age. J Child Neurol 2008; 23:582.
  298. Khan O, Chang E, Cipriani C, et al. Use of intravenous levetiracetam for management of acute seizures in neonates. Pediatr Neurol 2011; 44:265.
  299. Ben-Menachem E. Preliminary efficacy of levetiracetam in monotherapy. Epileptic Disord 2003; 5 Suppl 1:S51.
  300. Falip M, Carreño M, Amaro S, et al. Use of levetiracetam in hospitalized patients. Epilepsia 2006; 47:2186.
  301. Khurana DS, Kothare SV, Valencia I, et al. Levetiracetam monotherapy in children with epilepsy. Pediatr Neurol 2007; 36:227.
  302. Schachter SC. The next wave of anticonvulsants. Focus on levetiracetam, oxcarbazepine and zonisamide. CNS Drugs 2000; 14:229.
  303. Hirsch LJ, Arif H, Buchsbaum R, et al. Effect of age and comedication on levetiracetam pharmacokinetics and tolerability. Epilepsia 2007; 48:1351.
  304. Glass GA, Stankiewicz J, Mithoefer A, et al. Levetiracetam for seizures after liver transplantation. Neurology 2005; 64:1084.
  305. Otoul C, De Smedt H, Stockis A. Lack of pharmacokinetic interaction of levetiracetam on carbamazepine, valproic acid, topiramate, and lamotrigine in children with epilepsy. Epilepsia 2007; 48:2111.
  306. French J, Arrigo C. Rapid onset of action of levetiracetam in refractory epilepsy patients. Epilepsia 2005; 46:324.
  307. Ramael S, Daoust A, Otoul C, et al. Levetiracetam intravenous infusion: a randomized, placebo-controlled safety and pharmacokinetic study. Epilepsia 2006; 47:1128.
  308. Baulac M, Brodie MJ, Elger CE, et al. Levetiracetam intravenous infusion as an alternative to oral dosing in patients with partial-onset seizures. Epilepsia 2007; 48:589.
  309. Peltola J, Coetzee C, Jiménez F, et al. Once-daily extended-release levetiracetam as adjunctive treatment of partial-onset seizures in patients with epilepsy: a double-blind, randomized, placebo-controlled trial. Epilepsia 2009; 50:406.
  310. Ulloa CM, Towfigh A, Safdieh J. Review of levetiracetam, with a focus on the extended release formulation, as adjuvant therapy in controlling partial-onset seizures. Neuropsychiatr Dis Treat 2009; 5:467.
  311. Richy FF, Banerjee S, Brabant Y, Helmers S. Levetiracetam extended release and levetiracetam immediate release as adjunctive treatment for partial-onset seizures: an indirect comparison of treatment-emergent adverse events using meta-analytic techniques. Epilepsy Behav 2009; 16:240.
  312. Nicolson A, Lewis SA, Smith DF. A prospective analysis of the outcome of levetiracetam in clinical practice. Neurology 2004; 63:568.
  313. Depondt C, Yuen AW, Bell GS, et al. The long term retention of levetiracetam in a large cohort of patients with epilepsy. J Neurol Neurosurg Psychiatry 2006; 77:101.
  314. Egunsola O, Choonara I, Sammons HM. Safety of Levetiracetam in Paediatrics: A Systematic Review. PLoS One 2016; 11:e0149686.
  315. Hurtado B, Koepp MJ, Sander JW, Thompson PJ. The impact of levetiracetam on challenging behavior. Epilepsy Behav 2006; 8:588.
  316. Helmstaedter C, Fritz NE, Kockelmann E, et al. Positive and negative psychotropic effects of levetiracetam. Epilepsy Behav 2008; 13:535.
  317. de la Loge C, Hunter SJ, Schiemann J, Yang H. Assessment of behavioral and emotional functioning using standardized instruments in children and adolescents with partial-onset seizures treated with adjunctive levetiracetam in a randomized, placebo-controlled trial. Epilepsy Behav 2010; 18:291.
  318. Szucs A, Clemens Z, Jakus R, et al. The risk of paradoxical levetiracetam effect is increased in mentally retarded patients. Epilepsia 2008; 49:1174.
  319. Gelisse P, Juntas-Morales R, Genton P, et al. Dramatic weight loss with levetiracetam. Epilepsia 2008; 49:308.
  320. Hadjikoutis S, Pickersgill TP, Smith PE. Drug points: Weight loss associated with levetiracetam. BMJ 2003; 327:905.
  321. Cramer JA, Leppik IE, Rue KD, et al. Tolerability of levetiracetam in elderly patients with CNS disorders. Epilepsy Res 2003; 56:135.
  322. Sahaya K, Goyal MK, Sarwal A, Singh NN. Levetiracetam-induced thrombocytopenia among inpatients: a retrospective study. Epilepsia 2010; 51:2492.
  323. Meschede A, Runge U, Sabolek M. Thrombocytopenia during levetiracetam therapy. Epilepsy Res 2008; 80:91.
  324. Kimland E, Höjeberg B, von Euler M. Levetiracetam-induced thrombocytopenia. Epilepsia 2004; 45:877.
  325. Koubeissi MZ, Amina S, Pita I, et al. Tolerability and efficacy of oral loading of levetiracetam. Neurology 2008; 70:2166.
  326. Chhun S, Jullien V, Rey E, et al. Population pharmacokinetics of levetiracetam and dosing recommendation in children with epilepsy. Epilepsia 2009; 50:1150.
  327. Nicolas JM, Hannestad J, Holden D, et al. Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia 2016; 57:201.
  328. Yang X, Bognar J Jr, He T, et al. Brivaracetam augments short-term depression and slows vesicle recycling. Epilepsia 2015; 56:1899.
  329. Klein P, Schiemann J, Sperling MR, et al. A randomized, double-blind, placebo-controlled, multicenter, parallel-group study to evaluate the efficacy and safety of adjunctive brivaracetam in adult patients with uncontrolled partial-onset seizures. Epilepsia 2015; 56:1890.
  330. Tian X, Yuan M, Zhou Q, Wang X. The efficacy and safety of brivaracetam at different doses for partial-onset epilepsy: a meta-analysis of placebo-controlled studies. Expert Opin Pharmacother 2015; 16:1755.
  331. Ma J, Huang S, You C. Adjunctive brivaracetam for patients with refractory partial seizures: A meta-analysis of randomized placebo-controlled trials. Epilepsy Res 2015; 114:59.
  332. Toledo M, Whitesides J, Schiemann J, et al. Safety, tolerability, and seizure control during long-term treatment with adjunctive brivaracetam for partial-onset seizures. Epilepsia 2016; 57:1139.
  333. Kwan P, Trinka E, Van Paesschen W, et al. Adjunctive brivaracetam for uncontrolled focal and generalized epilepsies: results of a phase III, double-blind, randomized, placebo-controlled, flexible-dose trial. Epilepsia 2014; 55:38.
  334. Kälviäinen R, Genton P, Andermann E, et al. Brivaracetam in Unverricht-Lundborg disease (EPM1): Results from two randomized, double-blind, placebo-controlled studies. Epilepsia 2016; 57:210.
  335. Drugs@FDA: FDA Approved Drug Products. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Overview&DrugName=BRIVIACT.
  336. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/205836Orig1s000,205837Orig1s000,205838Orig1s000lbl.pdf (Accessed on March 09, 2016).
  337. Klein P, Biton V, Dilley D, et al. Safety and tolerability of adjunctive brivaracetam as intravenous infusion or bolus in patients with epilepsy. Epilepsia 2016; 57:1130.
  338. Steinig I, von Podewils F, Möddel G, et al. Postmarketing experience with brivaracetam in the treatment of epilepsies: A multicenter cohort study from Germany. Epilepsia 2017; 58:1208.
  339. French JA, Abou-Khalil BW, Leroy RF, et al. Randomized, double-blind, placebo-controlled trial of ezogabine (retigabine) in partial epilepsy. Neurology 2011; 76:1555.
  340. Stafstrom CE, Grippon S, Kirkpatrick P. Ezogabine (retigabine). Nat Rev Drug Discov 2011; 10:729.
  341. Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 2012; 53:412.
  342. Porter RJ, Partiot A, Sachdeo R, et al. Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 2007; 68:1197.
  343. Brodie MJ, Lerche H, Gil-Nagel A, et al. Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology 2010; 75:1817.
  344. Weisenberg JL, Wong M. Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures. Neuropsychiatr Dis Treat 2011; 7:409.
  345. Stephen LJ, Brodie MJ. Pharmacotherapy of epilepsy: newly approved and developmental agents. CNS Drugs 2011; 25:89.
  346. Brickel N, Gandhi P, VanLandingham K, et al. The urinary safety profile and secondary renal effects of retigabine (ezogabine): a first-in-class antiepileptic drug that targets KCNQ (K(v)7) potassium channels. Epilepsia 2012; 53:606.
  347. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm451181.htm.