Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Antibiotic studies for the treatment of community-acquired pneumonia in adults

Thomas M File, Jr, MD
Section Editor
John G Bartlett, MD
Deputy Editor
Anna R Thorner, MD


Community-acquired pneumonia (CAP) is a common and potentially serious illness. It is associated with considerable morbidity and mortality, particularly in older adult patients and those with significant comorbidities [1]. (See "Prognosis of community-acquired pneumonia in adults".)

CAP can be caused by a variety of pathogens, with bacteria being the most common identifiable cause (table 1 and table 2 and figure 1) [2,3]. Antibiotic therapy is typically begun on an empiric basis since the causative organism is not identified in an appreciable proportion of patients [1,4]. The choice of initial therapy is complicated by the emergence of antibiotic resistance among Streptococcus pneumoniae, the single most common bacterium responsible for CAP.

The evidence for efficacy of different antibiotic medications in the empiric treatment of CAP and issues related to drug resistance will be reviewed here. A variety of other important issues related to CAP are discussed separately. These include:

Treatment recommendations for CAP in outpatients (see "Treatment of community-acquired pneumonia in adults in the outpatient setting")

Treatment recommendations for CAP in patients requiring hospitalization (see "Treatment of community-acquired pneumonia in adults who require hospitalization")


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Sep 2016. | This topic last updated: Jul 18, 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 Suppl 2:S27.
  2. Marrie TJ, Poulin-Costello M, Beecroft MD, Herman-Gnjidic Z. Etiology of community-acquired pneumonia treated in an ambulatory setting. Respir Med 2005; 99:60.
  3. Lim WS, Macfarlane JT, Boswell TC, et al. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 2001; 56:296.
  4. Read RC. Evidence-based medicine: empiric antibiotic therapy in community-acquired pneumonia. J Infect 1999; 39:171.
  5. Chow JW, Yu VL. Antibiotic studies in pneumonia. Pitfalls in interpretation and suggested soluions. Chest 1989; 96:453.
  6. Bohte R, van't Wout JW, Lobatto S, et al. Efficacy and safety of azithromycin versus benzylpenicillin or erythromycin in community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 1995; 14:182.
  7. Contopoulos-Ioannidis DG, Ioannidis JP, Chew P, Lau J. Meta-analysis of randomized controlled trials on the comparative efficacy and safety of azithromycin against other antibiotics for lower respiratory tract infections. J Antimicrob Chemother 2001; 48:691.
  8. Spellberg B, Talbot GH, Brass EP, et al. Position paper: recommended design features of future clinical trials of antibacterial agents for community-acquired pneumonia. Clin Infect Dis 2008; 47 Suppl 3:S249.
  9. Talbot GH, Powers JH, Hoffmann SC, Biomarkers Consortium of the Foundation for the National Institutes of Health CABP-ABSSSI and HABP-VABP Project Teams. Developing Outcomes Assessments as Endpoints for Registrational Clinical Trials of Antibacterial Drugs: 2015 Update From the Biomarkers Consortium of the Foundation for the National Institutes of Health. Clin Infect Dis 2016; 62:603.
  10. Ailani RK, Agastya G, Ailani RK, et al. Doxycycline is a cost-effective therapy for hospitalized patients with community-acquired pneumonia. Arch Intern Med 1999; 159:266.
  11. Mokabberi R, Haftbaradaran A, Ravakhah K. Doxycycline vs. levofloxacin in the treatment of community-acquired pneumonia. J Clin Pharm Ther 2010; 35:195.
  12. Teh B, Grayson ML, Johnson PD, Charles PG. Doxycycline vs. macrolides in combination therapy for treatment of community-acquired pneumonia. Clin Microbiol Infect 2012; 18:E71.
  13. File TM Jr, Segreti J, Dunbar L, et al. A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community-acquired pneumonia. Antimicrob Agents Chemother 1997; 41:1965.
  14. Norrby SR, Petermann W, Willcox PA, et al. A comparative study of levofloxacin and ceftriaxone in the treatment of hospitalized patients with pneumonia. Scand J Infect Dis 1998; 30:397.
  15. Finch R, Schürmann D, Collins O, et al. Randomized controlled trial of sequential intravenous (i.v.) and oral moxifloxacin compared with sequential i.v. and oral co-amoxiclav with or without clarithromycin in patients with community-acquired pneumonia requiring initial parenteral treatment. Antimicrob Agents Chemother 2002; 46:1746.
  16. Lode H, File TM Jr, Mandell L, et al. Oral gemifloxacin versus sequential therapy with intravenous ceftriaxone/oral cefuroxime with or without a macrolide in the treatment of patients hospitalized with community-acquired pneumonia: a randomized, open-label, multicenter study of clinical efficacy and tolerability. Clin Ther 2002; 24:1915.
  17. Aubier M, Verster R, Regamey C, et al. Once-daily sparfloxacin versus high-dosage amoxicillin in the treatment of community-acquired, suspected pneumococcal pneumonia in adults. Sparfloxacin European Study Group. Clin Infect Dis 1998; 26:1312.
  18. O'Doherty B, Dutchman DA, Pettit R, Maroli A. Randomized, double-blind, comparative study of grepafloxacin and amoxycillin in the treatment of patients with community-acquired pneumonia. J Antimicrob Chemother 1997; 40 Suppl A:73.
  19. Trémolières F, de Kock F, Pluck N, Daniel R. Trovafloxacin versus high-dose amoxicillin (1 g three times daily) in the treatment of community-acquired bacterial pneumonia. Eur J Clin Microbiol Infect Dis 1998; 17:447.
  20. Postma DF, van Werkhoven CH, van Elden LJ, et al. Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med 2015; 372:1312.
  21. Vardakas KZ, Siempos II, Grammatikos A, et al. Respiratory fluoroquinolones for the treatment of community-acquired pneumonia: a meta-analysis of randomized controlled trials. CMAJ 2008; 179:1269.
  22. Ruhe J, Mildvan D. Does empirical therapy with a fluoroquinolone or the combination of a β-lactam plus a macrolide result in better outcomes for patients admitted to the general ward? Infect Dis Clin North Am 2013; 27:115.
  23. Eliakim-Raz N, Robenshtok E, Shefet D, et al. Empiric antibiotic coverage of atypical pathogens for community-acquired pneumonia in hospitalized adults. Cochrane Database Syst Rev 2012; :CD004418.
  24. Fogarty C, Siami G, Kohler R, et al. Multicenter, open-label, randomized study to compare the safety and efficacy of levofloxacin versus ceftriaxone sodium and erythromycin followed by clarithromycin and amoxicillin-clavulanate in the treatment of serious community-acquired pneumonia in adults. Clin Infect Dis 2004; 38 Suppl 1:S16.
  25. Leroy O, Saux P, Bédos JP, Caulin E. Comparison of levofloxacin and cefotaxime combined with ofloxacin for ICU patients with community-acquired pneumonia who do not require vasopressors. Chest 2005; 128:172.
  26. Torres A, Garau J, Arvis P, et al. Moxifloxacin monotherapy is effective in hospitalized patients with community-acquired pneumonia: the MOTIV study--a randomized clinical trial. Clin Infect Dis 2008; 46:1499.
  27. Moola S, Hagberg L, Churchyard GA, et al. A multicenter study of grepafloxacin and clarithromycin in the treatment of patients with community-acquired pneumonia. Chest 1999; 116:974.
  28. Lode H, Aronkyto T, Chuchalin AG, et al. A randomised, double-blind, double-dummy comparative study of gatifloxacin with clarithromycin in the treatment of community-acquired pneumonia. Clin Microbiol Infect 2004; 10:403.
  29. Gotfried MH, Dattani D, Riffer E, et al. A controlled, double-blind, multicenter study comparing clarithromycin extended-release tablets and levofloxacin tablets in the treatment of community-acquired pneumonia. Clin Ther 2002; 24:736.
  30. File TM Jr., Larsen LS, Fogarty LM, et al. Safety and efficacy of sequential (IV to po) moxifloxacin for the treatment of community-acquired pneumonia in hospitalized patients. Today's Therapeutic Trends 2001; 19:251.
  31. Anzueto A, Niederman MS, Pearle J, et al. Community-Acquired Pneumonia Recovery in the Elderly (CAPRIE): efficacy and safety of moxifloxacin therapy versus that of levofloxacin therapy. Clin Infect Dis 2006; 42:73.
  32. Morganroth J, Dimarco JP, Anzueto A, et al. A randomized trial comparing the cardiac rhythm safety of moxifloxacin vs levofloxacin in elderly patients hospitalized with community-acquired pneumonia. Chest 2005; 128:3398.
  33. Belforti RK, Lagu T, Haessler S, et al. Association Between Initial Route of Fluoroquinolone Administration and Outcomes in Patients Hospitalized for Community-acquired Pneumonia. Clin Infect Dis 2016; 63:1.
  34. Plouffe J, Schwartz DB, Kolokathis A, et al. Clinical efficacy of intravenous followed by oral azithromycin monotherapy in hospitalized patients with community-acquired pneumonia. The Azithromycin Intravenous Clinical Trials Group. Antimicrob Agents Chemother 2000; 44:1796.
  35. Asadi L, Sligl WI, Eurich DT, et al. Macrolide-based regimens and mortality in hospitalized patients with community-acquired pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2012; 55:371.
  36. O'Doherty B, Muller O. Randomized, multicentre study of the efficacy and tolerance of azithromycin versus clarithromycin in the treatment of adults with mild to moderate community-acquired pneumonia. Azithromycin Study Group. Eur J Clin Microbiol Infect Dis 1998; 17:828.
  37. Socan M. Treatment of atypical pneumonia with azithromycin: comparison of a 5-day and a 3-day course. J Chemother 1998; 10:64.
  38. Rahav G, Fidel J, Gibor Y, Shapiro M. Azithromycin versus comparative therapy for the treatment of community acquired pneumonia. Int J Antimicrob Agents 2004; 24:181.
  39. Schönwald S, Kuzman I, Oresković K, et al. Azithromycin: single 1.5 g dose in the treatment of patients with atypical pneumonia syndrome--a randomized study. Infection 1999; 27:198.
  40. Azithromycin extended-release (Zmax) for sinusitis and pneumonia. Med Lett Drugs Ther 2005; 47:78.
  41. Drehobl MA, De Salvo MC, Lewis DE, Breen JD. Single-dose azithromycin microspheres vs clarithromycin extended release for the treatment of mild-to-moderate community-acquired pneumonia in adults. Chest 2005; 128:2230.
  42. D'Ignazio J, Camere MA, Lewis DE, et al. Novel, single-dose microsphere formulation of azithromycin versus 7-day levofloxacin therapy for treatment of mild to moderate community-acquired Pneumonia in adults. Antimicrob Agents Chemother 2005; 49:4035.
  43. Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. N Engl J Med 2012; 366:1881.
  44. Svanström H, Pasternak B, Hviid A. Use of azithromycin and death from cardiovascular causes. N Engl J Med 2013; 368:1704.
  45. Mortensen EM, Halm EA, Pugh MJ, et al. Association of azithromycin with mortality and cardiovascular events among older patients hospitalized with pneumonia. JAMA 2014; 311:2199.
  46. Barrera CM, Mykietiuk A, Metev H, et al. Efficacy and safety of oral solithromycin versus oral moxifloxacin for treatment of community-acquired bacterial pneumonia: a global, double-blind, multicentre, randomised, active-controlled, non-inferiority trial (SOLITAIRE-ORAL). Lancet Infect Dis 2016; 16:421.
  47. Kobayashi Y, Wada H, Rossios C, et al. A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-κB inhibition. J Pharmacol Exp Ther 2013; 345:76.
  48. Sader HS, Flamm RK, Farrell DJ, Jones RN. Activity analyses of staphylococcal isolates from pediatric, adult, and elderly patients: AWARE Ceftaroline Surveillance Program. Clin Infect Dis 2012; 55 Suppl 3:S181.
  49. Pfaller MA, Farrell DJ, Sader HS, Jones RN. AWARE Ceftaroline Surveillance Program (2008-2010): trends in resistance patterns among Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States. Clin Infect Dis 2012; 55 Suppl 3:S187.
  50. Flamm RK, Sader HS, Farrell DJ, Jones RN. Ceftaroline potency among 9 US Census regions: report from the 2010 AWARE Program. Clin Infect Dis 2012; 55 Suppl 3:S194.
  51. Farrell DJ, Castanheira M, Mendes RE, et al. In vitro activity of ceftaroline against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE Surveillance Program (2008-2010). Clin Infect Dis 2012; 55 Suppl 3:S206.
  52. File TM Jr, Low DE, Eckburg PB, et al. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis 2010; 51:1395.
  53. File TM Jr, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis 2012; 55 Suppl 3:S173.
  54. Zhong NS, Sun T, Zhuo C, et al. Ceftaroline fosamil versus ceftriaxone for the treatment of Asian patients with community-acquired pneumonia: a randomised, controlled, double-blind, phase 3, non-inferiority with nested superiority trial. Lancet Infect Dis 2015; 15:161.
  55. Taboada M, Melnick D, Iaconis JP, et al. Ceftaroline fosamil versus ceftriaxone for the treatment of community-acquired pneumonia: individual patient data meta-analysis of randomized controlled trials. J Antimicrob Chemother 2016; 71:862.
  56. Pertel PE, Bernardo P, Fogarty C, et al. Effects of prior effective therapy on the efficacy of daptomycin and ceftriaxone for the treatment of community-acquired pneumonia. Clin Infect Dis 2008; 46:1142.
  57. Silverman JA, Mortin LI, Vanpraagh AD, et al. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 2005; 191:2149.
  58. http://www.fda.gov/Drugs/DrugSafety/ucm224370.htm (Accessed September 2, 2010).
  59. US Food and Drug Administration (FDA). FDA drug safety communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning. http://www.fda.gov/Drugs/DrugSafety/ucm369580.htm (Accessed on October 09, 2013).
  60. Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012; 54:1699.
  61. Tanaseanu C, Bergallo C, Teglia O, et al. Integrated results of 2 phase 3 studies comparing tigecycline and levofloxacin in community-acquired pneumonia. Diagn Microbiol Infect Dis 2008; 61:329.
  62. Lee JS, Giesler DL, Gellad WF, Fine MJ. Antibiotic Therapy for Adults Hospitalized With Community-Acquired Pneumonia: A Systematic Review. JAMA 2016; 315:593.
  63. Arnold FW, Summersgill JT, Lajoie AS, et al. A worldwide perspective of atypical pathogens in community-acquired pneumonia. Am J Respir Crit Care Med 2007; 175:1086.
  64. File TM Jr, Marrie TJ. Does empiric therapy for atypical pathogens improve outcomes for patients with CAP? Infect Dis Clin North Am 2013; 27:99.
  65. Johansson N, Kalin M, Tiveljung-Lindell A, et al. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis 2010; 50:202.
  66. Garin N, Genné D, Carballo S, et al. β-Lactam monotherapy vs β-lactam-macrolide combination treatment in moderately severe community-acquired pneumonia: a randomized noninferiority trial. JAMA Intern Med 2014; 174:1894.
  67. Nie W, Li B, Xiu Q. β-Lactam/macrolide dual therapy versus β-lactam monotherapy for the treatment of community-acquired pneumonia in adults: a systematic review and meta-analysis. J Antimicrob Chemother 2014; 69:1441.
  68. Martínez JA, Horcajada JP, Almela M, et al. Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2003; 36:389.
  69. Metersky ML, Ma A, Houck PM, Bratzler DW. Antibiotics for bacteremic pneumonia: Improved outcomes with macrolides but not fluoroquinolones. Chest 2007; 131:466.
  70. Restrepo MI, Mortensen EM, Waterer GW, et al. Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur Respir J 2009; 33:153.
  71. Martin-Loeches I, Lisboa T, Rodriguez A, et al. Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia. Intensive Care Med 2010; 36:612.
  72. Low DE. What is the relevance of antimicrobial resistance on the outcome of community-acquired pneumonia caused by Streptococcus pneumoniae? (should macrolide monotherapy be used for mild pneumonia?). Infect Dis Clin North Am 2013; 27:87.
  73. Ramsdell J, Narsavage GL, Fink JB, American College of Chest Physicians' Home Care Network Working Group. Management of community-acquired pneumonia in the home: an American College of Chest Physicians clinical position statement. Chest 2005; 127:1752.
  74. Vanderkooi OG, Low DE, Green K, et al. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis 2005; 40:1288.
  75. Daneman N, McGeer A, Green K, et al. Macrolide resistance in bacteremic pneumococcal disease: implications for patient management. Clin Infect Dis 2006; 43:432.
  76. Campbell GD Jr, Silberman R. Drug-resistant Streptococcus pneumoniae. Clin Infect Dis 1998; 26:1188.
  77. Hyde TB, Gay K, Stephens DS, et al. Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA 2001; 286:1857.
  78. Clavo-Sánchez AJ, Girón-González JA, López-Prieto D, et al. Multivariate analysis of risk factors for infection due to penicillin-resistant and multidrug-resistant Streptococcus pneumoniae: a multicenter study. Clin Infect Dis 1997; 24:1052.
  79. Ruhe JJ, Hasbun R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin Infect Dis 2003; 36:1132.
  80. Mandell LA. Introduction: clinical relevance of antimicrobial resistance. Semin Respir Infect 2001; 16:153.
  81. Metlay JP. Update on community-acquired pneumonia: impact of antibiotic resistance on clinical outcomes. Curr Opin Infect Dis 2002; 15:163.
  82. Falagas ME, Siempos II, Bliziotis IA, Panos GZ. Impact of initial discordant treatment with beta-lactam antibiotics on clinical outcomes in adults with pneumococcal pneumonia: a systematic review. Mayo Clin Proc 2006; 81:1567.
  83. Fuller JD, McGeer A, Low DE. Drug-resistant pneumococcal pneumonia: clinical relevance and approach to management. Eur J Clin Microbiol Infect Dis 2005; 24:780.
  84. File TM Jr. Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. Clin Microbiol Infect 2006; 12 Suppl 3:31.
  85. File Jr TM. Appropriate use of antimicrobials for drug-resistant pneumonia: focus on the significance of beta-lactam-resistant Streptococcus pneumoniae. Clin Infect Dis 2002; 34 Suppl 1:S17.
  86. Moroney JF, Fiore AE, Harrison LH, et al. Clinical outcomes of bacteremic pneumococcal pneumonia in the era of antibiotic resistance. Clin Infect Dis 2001; 33:797.
  87. MIC Interpretive Standards for S. pneumoniae. Clinical Laboratory Standards Institute (CLSI) 2008; 28:123.
  88. Tleyjeh IM, Tlaygeh HM, Hejal R, et al. The impact of penicillin resistance on short-term mortality in hospitalized adults with pneumococcal pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2006; 42:788.
  89. File TM Jr, Tan JS, Boex JR. The clinical relevance of penicillin-resistant Streptococcus pneumoniae: a new perspective. Clin Infect Dis 2006; 42:798.
  90. Yu VL, Chiou CC, Feldman C, et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis 2003; 37:230.
  91. Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother 2002; 46:2727.
  92. Daneman N, Low DE, McGeer A, et al. At the threshold: defining clinically meaningful resistance thresholds for antibiotic choice in community-acquired pneumonia. Clin Infect Dis 2008; 46:1131.
  93. Jones RN, Sader HS, Moet GJ, Farrell DJ. Declining antimicrobial susceptibility of Streptococcus pneumoniae in the United States: report from the SENTRY Antimicrobial Surveillance Program (1998-2009). Diagn Microbiol Infect Dis 2010; 68:334.
  94. Flamm R. Personal communication. April 21, 2016.
  95. Musher DM, Dowell ME, Shortridge VD, et al. Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N Engl J Med 2002; 346:630.
  96. Kelley MA, Weber DJ, Gilligan P, Cohen MS. Breakthrough pneumococcal bacteremia in patients being treated with azithromycin and clarithromycin. Clin Infect Dis 2000; 31:1008.
  97. Lonks JR, Garau J, Gomez L, et al. Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae. Clin Infect Dis 2002; 35:556.
  98. Iannini PB, Paladino JA, Lavin B, et al. A case series of macrolide treatment failures in community acquired pneumonia. J Chemother 2007; 19:536.
  99. Cilloniz C, Albert RK, Liapikou A, et al. The Effect of Macrolide Resistance on the Presentation and Outcome of Patients Hospitalized for Streptococcus pneumoniae Pneumonia. Am J Respir Crit Care Med 2015; 191:1265.
  100. From the Food and Drug Administration. JAMA 2000; 283:1679.
  101. Dooley KE, Golub J, Goes FS, et al. Empiric treatment of community-acquired pneumonia with fluoroquinolones, and delays in the treatment of tuberculosis. Clin Infect Dis 2002; 34:1607.
  102. Yoon YS, Lee HJ, Yoon HI, et al. Impact of fluoroquinolones on the diagnosis of pulmonary tuberculosis initially treated as bacterial pneumonia. Int J Tuberc Lung Dis 2005; 9:1215.
  103. Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 2003; 3:432.
  104. Long R, Chong H, Hoeppner V, et al. Empirical treatment of community-acquired pneumonia and the development of fluoroquinolone-resistant tuberculosis. Clin Infect Dis 2009; 48:1354.
  105. Wang JY, Hsueh PR, Jan IS, et al. Empirical treatment with a fluoroquinolone delays the treatment for tuberculosis and is associated with a poor prognosis in endemic areas. Thorax 2006; 61:903.
  106. Low DE. Fluoroquinolones for treatment of community-acquired pneumonia and tuberculosis: putting the risk of resistance into perspective. Clin Infect Dis 2009; 48:1361.
  107. Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54:621.
  108. Menéndez R, Torres A, Rodríguez de Castro F, et al. Reaching stability in community-acquired pneumonia: the effects of the severity of disease, treatment, and the characteristics of patients. Clin Infect Dis 2004; 39:1783.
  109. Halm EA, Fine MJ, Marrie TJ, et al. Time to clinical stability in patients hospitalized with community-acquired pneumonia: implications for practice guidelines. JAMA 1998; 279:1452.
  110. el Moussaoui R, de Borgie CA, van den Broek P, et al. Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. BMJ 2006; 332:1355.
  111. Li JZ, Winston LG, Moore DH, Bent S. Efficacy of short-course antibiotic regimens for community-acquired pneumonia: a meta-analysis. Am J Med 2007; 120:783.
  112. Dimopoulos G, Matthaiou DK, Karageorgopoulos DE, et al. Short- versus long-course antibacterial therapy for community-acquired pneumonia : a meta-analysis. Drugs 2008; 68:1841.
  113. Vergis EN, Indorf A, File TM Jr, et al. Azithromycin vs cefuroxime plus erythromycin for empirical treatment of community-acquired pneumonia in hospitalized patients: a prospective, randomized, multicenter trial. Arch Intern Med 2000; 160:1294.
  114. Kinasewitz G, Wood RG. Azithromycin versus cefaclor in the treatment of acute bacterial pneumonia. Eur J Clin Microbiol Infect Dis 1991; 10:872.
  115. Dunbar LM, Wunderink RG, Habib MP, et al. High-dose, short-course levofloxacin for community-acquired pneumonia: a new treatment paradigm. Clin Infect Dis 2003; 37:752.
  116. File TM Jr, Mandell LA, Tillotson G, et al. Gemifloxacin once daily for 5 days versus 7 days for the treatment of community-acquired pneumonia: a randomized, multicentre, double-blind study. J Antimicrob Chemother 2007; 60:112.