UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Acute respiratory distress syndrome: Prognosis and outcomes in adults

Author
Mark D Siegel, MD
Section Editor
Polly E Parsons, MD
Deputy Editor
Geraldine Finlay, MD

INTRODUCTION

A distinct type of hypoxemic respiratory failure characterized by acute abnormality of both lungs was first recognized during the 1960s. Military clinicians working in surgical hospitals in Vietnam called it shock lung, while civilian clinicians referred to it as adult respiratory distress syndrome [1]. Subsequent recognition that individuals of any age could be afflicted led to the current term, acute respiratory distress syndrome (ARDS).

The Berlin Definition of ARDS (published in 2012) has replaced the American-European Consensus Conference’s definition of ARDS (published in 1994) [2,3]. However, it should be recognized that most evidence is based upon prior definitions. The current diagnostic criteria for ARDS are provided separately. (See "Acute respiratory distress syndrome: Clinical features and diagnosis in adults", section on 'Diagnostic criteria'.)

The prognosis of ARDS is reviewed here. Other issues related to ARDS are discussed separately. (See "Acute respiratory distress syndrome: Clinical features and diagnosis in adults" and "Acute respiratory distress syndrome: Epidemiology, pathophysiology, pathology, and etiology in adults" and "Mechanical ventilation of adults in acute respiratory distress syndrome" and "Acute respiratory distress syndrome: Supportive care and oxygenation in adults" and "Acute respiratory distress syndrome: Investigational or ineffective pharmacotherapy in adults".)

MORTALITY

ARDS is associated with appreciable mortality, with estimates ranging from 26 to 58 percent [4-12]. Mortality increases with disease severity. As an example, in a multicenter, international, prospective cohort study of 3022 patients with ARDS, unadjusted hospital mortality was reported to be 35 percent among those with mild ARDS, 40 percent for those with moderate disease and 46 percent for patients with severe ARDS [12]. Similar to other studies, mortality directly correlated with driving pressure (ie, the difference between plateau and positive end expiratory pressures) [13]. (See "Mechanical ventilation of adults in acute respiratory distress syndrome", section on 'Driving pressure'.)

The underlying cause of the ARDS is the most common cause of death among patients who die early [7,8,14,15]. In contrast, nosocomial pneumonia and sepsis are the most common causes of death among patients who die later in their clinical course [14]. Patients uncommonly die from respiratory failure [8].

       

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Aug 2017. | This topic last updated: Mar 06, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
References
Top
  1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2:319.
  2. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818.
  3. Artigas A, Bernard GR, Carlet J, et al. The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am J Respir Crit Care Med 1998; 157:1332.
  4. MacCallum NS, Evans TW. Epidemiology of acute lung injury. Curr Opin Crit Care 2005; 11:43.
  5. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353:1685.
  6. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351:327.
  7. Estenssoro E, Dubin A, Laffaire E, et al. Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 2002; 30:2450.
  8. Bersten AD, Edibam C, Hunt T, et al. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med 2002; 165:443.
  9. Villar J, Blanco J, Añón JM, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 2011; 37:1932.
  10. Esteban A, Frutos-Vivar F, Muriel A, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013; 188:220.
  11. Wang CY, Calfee CS, Paul DW, et al. One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Med 2014; 40:388.
  12. Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016; 315:788.
  13. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372:747.
  14. Montgomery AB, Stager MA, Carrico CJ, Hudson LD. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1985; 132:485.
  15. Stapleton RD, Wang BM, Hudson LD, et al. Causes and timing of death in patients with ARDS. Chest 2005; 128:525.
  16. Erickson SE, Martin GS, Davis JL, et al. Recent trends in acute lung injury mortality: 1996-2005. Crit Care Med 2009; 37:1574.
  17. Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 2008; 133:1120.
  18. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301.
  19. Gong MN, Thompson BT, Williams P, et al. Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med 2005; 33:1191.
  20. Kumar G, Majumdar T, Jacobs ER, et al. Outcomes of morbidly obese patients receiving invasive mechanical ventilation: a nationwide analysis. Chest 2013; 144:48.
  21. Pickkers P, de Keizer N, Dusseljee J, et al. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med 2013; 41:1878.
  22. Stapleton RD, Dixon AE, Parsons PE, et al. The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest 2010; 138:568.
  23. Memtsoudis SG, Bombardieri AM, Ma Y, et al. Mortality of patients with respiratory insufficiency and adult respiratory distress syndrome after surgery: the obesity paradox. J Intensive Care Med 2012; 27:306.
  24. Dossett LA, Heffernan D, Lightfoot M, et al. Obesity and pulmonary complications in critically injured adults. Chest 2008; 134:974.
  25. Abhyankar S, Leishear K, Callaghan FM, et al. Lower short- and long-term mortality associated with overweight and obesity in a large cohort study of adult intensive care unit patients. Crit Care 2012; 16:R235.
  26. Goulenok C, Monchi M, Chiche JD, et al. Influence of overweight on ICU mortality: a prospective study. Chest 2004; 125:1441.
  27. The ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012; May 21:Epub ahead of print.
  28. Bone RC, Maunder R, Slotman G, et al. An early test of survival in patients with the adult respiratory distress syndrome. The PaO2/FIo2 ratio and its differential response to conventional therapy. Prostaglandin E1 Study Group. Chest 1989; 96:849.
  29. Nin N, Muriel A, Peñuelas O, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017; 43:200.
  30. Bull TM, Clark B, McFann K, et al. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 2010; 182:1123.
  31. Jozwiak M, Silva S, Persichini R, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 2013; 41:472.
  32. Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346:1281.
  33. Doyle RL, Szaflarski N, Modin GW, et al. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med 1995; 152:1818.
  34. Bone RC, Balk R, Slotman G, et al. Adult respiratory distress syndrome. Sequence and importance of development of multiple organ failure. The Prostaglandin E1 Study Group. Chest 1992; 101:320.
  35. Suchyta MR, Clemmer TP, Elliott CG, et al. The adult respiratory distress syndrome. A report of survival and modifying factors. Chest 1992; 101:1074.
  36. Sloane PJ, Gee MH, Gottlieb JE, et al. A multicenter registry of patients with acute respiratory distress syndrome. Physiology and outcome. Am Rev Respir Dis 1992; 146:419.
  37. Headley AS, Tolley E, Meduri GU. Infections and the inflammatory response in acute respiratory distress syndrome. Chest 1997; 111:1306.
  38. Ely EW, Wheeler AP, Thompson BT, et al. Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann Intern Med 2002; 136:25.
  39. Calfee CS, Eisner MD, Ware LB, et al. Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders. Crit Care Med 2007; 35:2243.
  40. Clark BJ, Williams A, Feemster LM, et al. Alcohol screening scores and 90-day outcomes in patients with acute lung injury. Crit Care Med 2013; 41:1518.
  41. Cardinal-Fernández P, Bajwa EK, Dominguez-Calvo A, et al. The Presence of Diffuse Alveolar Damage on Open Lung Biopsy Is Associated With Mortality in Patients With Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Chest 2016; 149:1155.
  42. Levitt JE, Gould MK, Ware LB, Matthay MA. The pathogenetic and prognostic value of biologic markers in acute lung injury. J Intensive Care Med 2009; 24:151.
  43. Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128:3098.
  44. Rosenberg AL, Dechert RE, Park PK, et al. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med 2009; 24:35.
  45. Netzer G, Shah CV, Iwashyna TJ, et al. Association of RBC transfusion with mortality in patients with acute lung injury. Chest 2007; 132:1116.
  46. Treggiari MM, Martin DP, Yanez ND, et al. Effect of intensive care unit organizational model and structure on outcomes in patients with acute lung injury. Am J Respir Crit Care Med 2007; 176:685.
  47. Kangelaris KN, Ware LB, Wang CY, et al. Timing of Intubation and Clinical Outcomes in Adults With Acute Respiratory Distress Syndrome. Crit Care Med 2016; 44:120.
  48. Orme J Jr, Romney JS, Hopkins RO, et al. Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 2003; 167:690.
  49. Cheung AM, Tansey CM, Tomlinson G, et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 174:538.
  50. Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364:1293.
  51. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 2003; 348:683.
  52. Angus DC, Musthafa AA, Clermont G, et al. Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163:1389.
  53. Hopkins RO, Weaver LK, Collingridge D, et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171:340.
  54. Hopkins RO, Weaver LK, Pope D, et al. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 160:50.
  55. Wilcox ME, Patsios D, Murphy G, et al. Radiologic outcomes at 5 years after severe ARDS. Chest 2013; 143:920.
  56. Wunsch H, Christiansen CF, Johansen MB, et al. Psychiatric diagnoses and psychoactive medication use among nonsurgical critically ill patients receiving mechanical ventilation. JAMA 2014; 311:1133.
  57. Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, et al. Cooccurrence of and remission from general anxiety, depression, and posttraumatic stress disorder symptoms after acute lung injury: a 2-year longitudinal study. Crit Care Med 2015; 43:642.
  58. Mikkelsen ME, Christie JD, Lanken PN, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 2012; 185:1307.
  59. Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med 2013; 369:1306.
  60. Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, et al. Depressive symptoms and impaired physical function after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med 2012; 185:517.
  61. Huang M, Parker AM, Bienvenu OJ, et al. Psychiatric Symptoms in Acute Respiratory Distress Syndrome Survivors: A 1-Year National Multicenter Study. Crit Care Med 2016; 44:954.
  62. Elliott CG, Morris AH, Cengiz M. Pulmonary function and exercise gas exchange in survivors of adult respiratory distress syndrome. Am Rev Respir Dis 1981; 123:492.
  63. Neff TA, Stocker R, Frey HR, et al. Long-term assessment of lung function in survivors of severe ARDS. Chest 2003; 123:845.
  64. Suchyta MR, Elliott CG, Jensen RL, Crapo RO. Predicting the presence of pulmonary function impairment in adult respiratory distress syndrome survivors. Respiration 1993; 60:103.
  65. McHugh LG, Milberg JA, Whitcomb ME, et al. Recovery of function in survivors of the acute respiratory distress syndrome. Am J Respir Crit Care Med 1994; 150:90.
  66. Dinglas VD, Aronson Friedman L, Colantuoni E, et al. Muscle Weakness and 5-Year Survival in Acute Respiratory Distress Syndrome Survivors. Crit Care Med 2017; 45:446.
  67. Pfoh ER, Wozniak AW, Colantuoni E, et al. Physical declines occurring after hospital discharge in ARDS survivors: a 5-year longitudinal study. Intensive Care Med 2016; 42:1557.
  68. Cox CE, Docherty SL, Brandon DH, et al. Surviving critical illness: acute respiratory distress syndrome as experienced by patients and their caregivers. Crit Care Med 2009; 37:2702.
  69. Burnham EL, Hyzy RC, Paine R 3rd, et al. Chest CT features are associated with poorer quality of life in acute lung injury survivors. Crit Care Med 2013; 41:445.
  70. Elliott CG, Rasmusson BY, Crapo RO, et al. Prediction of pulmonary function abnormalities after adult respiratory distress syndrome (ARDS). Am Rev Respir Dis 1987; 135:634.
  71. Ghio AJ, Elliott CG, Crapo RO, et al. Impairment after adult respiratory distress syndrome. An evaluation based on American Thoracic Society recommendations. Am Rev Respir Dis 1989; 139:1158.
  72. Cooper AB, Ferguson ND, Hanly PJ, et al. Long-term follow-up of survivors of acute lung injury: lack of effect of a ventilation strategy to prevent barotrauma. Crit Care Med 1999; 27:2616.