UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Medline ® Abstract for Reference 46

of 'Actions of angiotensin II on the heart'

46
TI
Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice.
AU
Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C
SO
Circulation. 2005;112(17):2677.
 
BACKGROUND: Increased production of reactive oxygen species (ROSs) by angiotensin II (Ang II) is involved in the initiation and progression of cardiovascular diseases. NADPH oxidase is a major source of superoxide generated in vascular tissues. Although Nox1 has been identified in vascular smooth muscle cells as a new homolog of gp91phox (Nox2), a catalytic subunit of NADPH oxidase, the pathophysiological function of Nox1-derived ROSs has not been fully elucidated. To clarify the role of Nox1 in Ang II-mediated hypertension, we generated Nox1-deficient (-/Y) mice.
METHODS AND RESULTS: No difference in the baseline blood pressure was observed between Nox1(+/Y) and Nox1(-/Y). Infusion of Ang II induced a significant increase in mean blood pressure, accompanied by augmented expression of Nox1 mRNA and superoxide production in the aorta of Nox1(+/Y), whereas the elevation in blood pressure and production of superoxide were significantly blunted in Nox1(-/Y). Conversely, the infusion of pressor as well as subpressor doses of Ang II did elicit marked hypertrophy in the thoracic aorta of Nox1(-/Y) similar to Nox1(+/Y). Administration of a nitric oxide synthase inhibitor (L-NAME) to Nox1(+/Y) did not affect the Ang II-mediated increase in blood pressure, but it abolished the suppressed pressor response to Ang II in Nox1(-/Y). Finally, endothelium-dependent relaxation and the level of cGMP in the isolated aorta were preserved in Nox1(-/Y) infused with Ang II.
CONCLUSIONS: A pivotal role for ROSs derived from Nox1/NADPH oxidase was suggested in the pressor response to Ang II by reducing the bioavailability of nitric oxide.
AD
Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
PMID